Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 299(2): 102911, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36642187

RESUMEN

The attachment of a sugar to a hydrophobic lipid carrier is the first step in the biosynthesis of many glycoconjugates. In the halophilic archaeon Haloarcula hispanica, HAH_1206, renamed AepG, is a predicted glycosyltransferase belonging to the CAZy Group 2 family that shares a conserved amino acid sequence with dolichol phosphate mannose synthases. In this study, the function of AepG was investigated by genetic and biochemical approaches. We found that aepG deletion led to the disappearance of dolichol phosphate-glucuronic acid. Our biochemical assays revealed that recombinant cellulose-binding, domain-tagged AepG could catalyze the formation of dolichol phosphate-glucuronic acid in time- and dose-dependent manners. Based on the in vivo and in vitro analyses, AepG was confirmed to be a dolichol phosphate glucuronosyltransferase involved in the synthesis of the acidic exopolysaccharide produced by H. hispanica. Furthermore, lack of aepG resulted in hindered growth and cell aggregation in high salt medium, indicating that AepG is vital for the adaptation of H. hispanica to a high salt environment. In conclusion, AepG is the first dolichol phosphate glucuronosyltransferase identified in any of the three domains of life and, moreover, offers a starting point for further investigation into the diverse pathways used for extracellular polysaccharide biosynthesis in archaea.


Asunto(s)
Haloarcula , Secuencia de Aminoácidos , Fosfatos de Dolicol/metabolismo , Haloarcula/metabolismo , Transferasas/metabolismo , Polisacáridos/metabolismo
2.
J Intern Med ; 295(5): 634-650, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38439117

RESUMEN

BACKGROUND: The immune reconstitution after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is crucial for preventing infections and relapse and enhancing graft-versus-tumor effects. B cells play an important role in humoral immunity and immune regulation, but their reconstitution after allo-HSCT has not been well studied. METHODS: In this study, we analyzed the dynamics of B cells in 252 patients who underwent allo-HSCT for 2 years and assessed the impact of factors on B-cell reconstitution and their correlations with survival outcomes, as well as the development stages of B cells in the bone marrow and the subsets in the peripheral blood. RESULTS: We found that the B-cell reconstitution in the bone marrow was consistent with the peripheral blood (p = 0.232). B-cell reconstitution was delayed by the male gender, age >50, older donor age, the occurrence of chronic and acute graft-versus-host disease, and the infections of fungi and cytomegalovirus. The survival analysis revealed that patients with lower B cells had higher risks of death and relapse. More importantly, we used propensity score matching to obtain the conclusion that post-1-year B-cell reconstitution is better in females. Meanwhile, using mediation analysis, we proposed the age-B cells-survival axis and found that B-cell reconstitution at month 12 posttransplant mediated the effect of age on patient survival (p = 0.013). We also found that younger patients showed more immature B cells in the bone marrow after transplantation (p = 0.037). CONCLUSION: Our findings provide valuable insights for optimizing the management of B-cell reconstitution and improving the efficacy and safety of allo-HSCT.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Femenino , Humanos , Masculino , Trasplante Homólogo , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/prevención & control , Enfermedad Injerto contra Huésped/epidemiología , Linfocitos B , Recurrencia
3.
Anim Biotechnol ; 35(1): 2290526, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38085574

RESUMEN

The objective of this experiment was to evaluate the influence of nanoselenium (NANO-Se) addition on milk production, milk fatty acid synthesis, the development and metabolism regulation of mammary gland in dairy cows. Forty-eight Holstein dairy cows averaging 720 ± 16.8 kg of body weight, 66.9 ± 3.84 d in milk (dry matter intake [DIM]) and 35.2 ± 1.66 kg/d of milk production were divided into four treatments blocked by DIM and milk yields. Treatments were control group, low-Se (LSe), medium-Se (MSe) and high-Se (HSe) with 0, 0.1, 0.2 and 0.3 mg Se, respectively, from NANO-Se per kg dietary dry matter (DM). Production of energy- and fat-corrected milk (FCM) and milk fat quadratically increased (p < 0.05), while milk lactose yields linearly increased (p < 0.05) with increasing NANO-Se addition. The proportion of saturated fatty acids (SFAs) linearly decreased (p < 0.05), while proportions of monounsaturated fatty acids (MUFAs) linearly increased and polyunsaturated fatty acids (PUFAs) quadratically increased. The digestibility of dietary DM, organic matter (OM), crude protein (CP), neutral detergent fiber (NDF) and acid detergent fiber (ADF) quadratically increased (p < 0.05). Ruminal pH quadratically decreased (p < 0.01), while total VFA linearly increased (p < 0.05) with increasing NANO-Se addition. The acetic to propionic ratio decreased (p < 0.05) linearly due to the unaltered acetic molar percentage and a quadratical increase in propionic molar percentage. The activity of CMCase, xylanase, cellobiase and pectinase increased linearly (p < 0.05) following NANO-Se addition. The activity of α-amylase increased linearly (p < 0.01) with an increase in NANO-Se dosage. Blood glucose, total protein, estradiol, prolactin, IGF-1 and Se linearly increased (p < 0.05), while urea nitrogen concentration quadratically decreased (p = 0.04). Moreover, the addition of Se at 0.3 mg/kg from NANO-Se promoted (p < 0.05) mRNA and protein expression of PPARγ, SREBP1, ACACA, FASN, SCD, CCNA2, CCND1, PCNA, Bcl-2 and the ratios of p-ACACA/ACACA and BCL2/BAX4, but decreased (p < 0.05) mRNA and protein expressions of Bax, Caspase-3 and Caspase-9. The results suggest that milk production and milk fat synthesis increased by NANO-Se addition by stimulating rumen fermentation, nutrients digestion, gene and protein expressions concerned with milk fat synthesis and mammary gland development.


Asunto(s)
Detergentes , Lactancia , Femenino , Bovinos , Animales , Lactancia/fisiología , Detergentes/metabolismo , Detergentes/farmacología , Digestión/fisiología , Leche/metabolismo , Dieta/veterinaria , Nutrientes , Suplementos Dietéticos , ARN Mensajero/metabolismo , Rumen/metabolismo , Alimentación Animal/análisis
4.
Arch Microbiol ; 205(9): 317, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612565

RESUMEN

A Gram-negative, aerobic, short rod-shaped bacterium, designated ASW11-19T, was isolated from a coastal seawater sample of the Yellow Sea, PR China. Strain ASW11-19T grew optimally at 37 °C, 3.0-5.0% (w/v) NaCl and pH 7.5. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain ASW11-19T belonged to the genus Alteromonas and most closely related to Alteromonas profundi 345S023T and Alteromonas fortis 1T (98.4%, both). The draft genome was 3.55 Mb with 3150 protein-coding genes, 18 contigs, and a DNA G+C content was 44.4%. The digital DNA-DNA hybridization and average nucleotide identity values were below the species-delineating thresholds. The major fatty acids were summed feature 3 (C16:1ω7c/C16:1ω6c), summed feature 8 (C18:1ω7c/C18:1ω6c), and C16:0. The sole respiratory quinone was ubiquinone 8. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, phospholipid, and two unidentified lipids. Based on these genomic data, phenotypic and chemotaxonomic properties, strain ASW11-19T is considered to represent a novel species of the genus Alteromonas. The name Alteromonas salexigens sp.nov. is proposed for ASW11-19T (=MCCC 1K07239T=KCTC 92247T).


Asunto(s)
Alteromonas , Alteromonas/genética , Filogenia , ARN Ribosómico 16S/genética , Ácidos Grasos , ADN
5.
Br J Nutr ; 129(1): 1-9, 2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35225178

RESUMEN

This study examined the influences of coated folic acid (CFA) and coated riboflavin (CRF) on bull performance, nutrients digestion and ruminal fermentation. Forty-eight Angus bulls based on a randomised block and 2 × 2 factorial design were assigned to four treatments. The CFA of 0 or 6 mg of folic acid/kg DM was supplemented in diets with CRF 0 or 60 mg riboflavin (RF)/kg DM. Supplementation of CRF in diets with CFA had greater increase in daily weight gain and feed efficiency than in diets without CFA. Supplementation with CFA or CRF enhanced digestibility of DM, organic matter, crude protein, neutral-detergent fibre and non-fibre carbohydrate. Ruminal pH and ammonia N content decreased and total volatile fatty acids concentration and acetate to propionate ratio elevated for CFA or CRF addition. Supplement of CFA or CRF increased the activities of fibrolytic enzymes and the numbers of total bacteria, protozoa, fungi, dominant fibrolytic bacteria and Prevotella ruminicola. The activities of α-amylase, protease and pectinase and the numbers of Butyrivibrio fibrisolvens and Ruminobacter amylophilus were increased by CFA but were unaffected by CRF. Blood concentration of folate elevated and homocysteine decreased for CFA addition. The CRF supplementation elevated blood concentrations of folate and RF. These findings suggested that CFA or CRF inclusion had facilitating effects on performance and ruminal fermentation, and combined addition of CFA and CRF had greater increase in performance than CFA or CRF addition alone in bulls.


Asunto(s)
Ácido Fólico , Rumen , Animales , Bovinos , Masculino , Alimentación Animal/análisis , Dieta/veterinaria , Suplementos Dietéticos , Digestión , Fermentación , Ácido Fólico/farmacología , Ácido Fólico/metabolismo , Nutrientes/metabolismo , Rumen/metabolismo
6.
Curr Microbiol ; 80(11): 343, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37725183

RESUMEN

A Gram-negative, aerobic, motile by flagellum, and rod-shaped bacterium, designated ASW11-7T, was isolated from coastal surface seawater sample collected from the Yellow Sea, PR China. Strain ASW11-7T grew optimally at 37℃, 4.0% (w/v) NaCl and pH 7.0. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain ASW11-7T belongs to the genus Alteromonas and most closely related to Alteromonas ponticola MYP5T (99.6% similarity), followed by Alteromonas confluentis DSSK2-12T (98.2%), Alteromonas lipolytica JW12T (98.2%), and Alteromonas hispanica F-32T (98.0%). The draft genome of strain ASW11-7T had a length of 3,530,922 bp with a G + C content of 44.9%, predicting 3108 coding sequences, 5 rRNA, 4 ncRNAs, 49 tRNAs genes, and 18 pseudogenes. The average nucleotide identity and digital DNA-DNA hybridization values between genomic sequences of strain ASW11-7T and closely related species of Alteromonas were in ranges of 66.9-77.8% and 18.3-27.5%, respectively. The major fatty acids of strain ASW11-7T were C16:0, summed feature 3 (C16:1ω7c/C16:1ω6c), and summed feature 8 (C18:1ω7c/C18:1ω6c). The predominant respiratory quinone was Q-8 and the major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. Based on the phenotypic properties, genotypic distinctiveness, and chemotaxonomic features, strain ASW11-7T is considered to represent a novel Alteromonas species, for which the name Alteromonas aquimaris sp. nov. is proposed. The type strain is ASW11-7T (= KCTC 92853T = MCCC 1K07240T).


Asunto(s)
Alteromonas , Alteromonas/genética , Filogenia , ARN Ribosómico 16S/genética , China , ADN
7.
Anim Biotechnol ; 34(8): 3796-3807, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37409454

RESUMEN

The experiment investigated the impacts of FA on the proliferation of bovine mammary gland epithelial cells (BMECs) and to investigate the underlying mechanisms. Supplementation of 10 µM FA elevated the mRNA expression of proliferating cell nuclear antigen (PCNA), cyclin A2 and cyclin D1, and protein expression of PCNA and Cyclin A1. The mRNA and protein expression of B-cell lymphoma-2 (BCL2) and the BCL2 to BCL2 associated X 4 (BAX4) ratio elevated, while that of BAX, Caspase-3 and Caspase-9 reduced by FA. Both Akt and mTOR signaling pathways were activated by FA. Moreover, the stimulation of BMECs proliferation, the alteration of proliferative genes and protein expression, the change of apoptotic genes and protein expression, and the activation of mTOR signaling pathway caused by FA were obstructed by Akt inhibitor. Suppression of mTOR with Rapamycin reversed the FA-modulated promotion of BMECs proliferation and change of proliferous genes and protein expression, with no impact on mRNA or proteins expression related to apoptosis and FA-activated Akt signaling pathway. Supplementation of rumen-protected FA in cow diets evaluated milk yields and serum insulin-like growth factor-1 and estradiol levels. The results implied that the proliferation of BMECs was stimulated by FA through the Akt-mTOR signaling pathway.


Asunto(s)
Glándulas Mamarias Animales , Proteínas Proto-Oncogénicas c-akt , Femenino , Bovinos , Animales , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/farmacología , Glándulas Mamarias Animales/metabolismo , Serina-Treonina Quinasas TOR/genética , Dieta/veterinaria , Leche/metabolismo , Células Epiteliales/metabolismo , ARN Mensajero/genética , Lactancia/genética , Suplementos Dietéticos , Ácido Fólico/farmacología , Ácido Fólico/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/farmacología
8.
Phytother Res ; 37(1): 195-210, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36097321

RESUMEN

Inflammation and oxidative stress caused by fine particulate matter (PM2.5) increase the incidence and mortality rates of respiratory disorders. Rosavin is the main chemical component of Rhodiola plants, which exerts anti-oxidative and antiinflammatory effects. In this research, the potential therapeutic effect of rosavin was investigated by the PM2.5-induced lung injury rat model. Rats were instilled with PM2.5 (7.5 mg/kg) suspension intratracheally, while rosavin (50 mg/kg, 100 mg/kg) was delivered by intraperitoneal injection before the PM2.5 injection. It was observed that rosavin could prevent lung injury caused by PM2.5. PM2.5 showed obvious ferroptosis-related ultrastructural alterations, which were significantly corrected by rosavin. The pretreatment with rosavin downregulated the levels of tissue iron, malondialdehyde, and 4-hydroxynonenal, and increased the levels of glutathione. The expression of nuclear factor E2-related factor 2 (Nrf2) was upregulated by rosavin, together with other ferroptosis-related proteins. RSL3, a specific ferroptosis agonist, reversed the beneficial impact of rosavin. The network pharmacology approach predicted the activation of rosavin on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. LY294002, a potent PI3K inhibitor, decreased the upregulation of Nrf2 induced by rosavin. In conclusion, rosavin prevented lung injury induced by PM2.5 stimulation and suppressed ferroptosis via upregulating PI3K/Akt/Nrf2 signaling pathway.


Asunto(s)
Lesión Pulmonar , Proteínas Proto-Oncogénicas c-akt , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Lesión Pulmonar/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal , Estrés Oxidativo , Material Particulado/toxicidad
9.
Phytother Res ; 37(10): 4522-4539, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37313866

RESUMEN

High-altitude cardiac injury (HACI) is one of the common tissue injuries caused by high-altitude hypoxia that may be life threatening. Notoginsenoside R1 (NG-R1), a major saponin of Panax notoginseng, exerts anti-oxidative, anti-inflammatory, and anti-apoptosis effects, protecting the myocardium from hypoxic injury. This study aimed to investigate the protective effect and molecular mechanism of NG-R1 against HACI. We simulated a 6000 m environment for 48 h in a hypobaric chamber to create a HACI rat model. Rats were pretreated with NG-R1 (50, 100 mg/kg) or dexamethasone (4 mg/kg) for 3 days and then placed in the chamber for 48 h. The effect of NG-R1 was evaluated by changes in Electrocardiogram parameters, histopathology, cardiac biomarkers, oxidative stress and inflammatory indicators, key protein expression, and immunofluorescence. U0126 was used to verify whether the anti-apoptotic effect of NG-R1 was related to the activation of ERK pathway. Pretreatment with NG-R1 can improve abnormal cardiac electrical conduction and alleviate high-altitude-induced tachycardia. Similar to dexamethasone, NG-R1 can improve pathological damage, reduce the levels of cardiac injury biomarkers, oxidative stress, and inflammatory indicators, and down-regulate the expression of hypoxia-related proteins HIF-1α and VEGF. In addition, NG-R1 reduced cardiomyocyte apoptosis by down-regulating the expression of apoptotic proteins Bax, cleaved caspase 3, cleaved caspase 9, and cleaved PARP1 and up-regulating the expression of anti-apoptotic protein Bcl-2 through activating the ERK1/2-P90RSK-Bad pathway. In conclusion, NG-R1 prevented HACI and suppressed apoptosis via activation of the ERK1/2-P90RSK-Bad pathway, indicating that NG-R1 has therapeutic potential to treat HACI.

10.
J Sci Food Agric ; 103(3): 1522-1529, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36184578

RESUMEN

BACKGROUND: Considering the high energy demand of lactation and the potential of guanidinoacetic acid (GAA) addition on the increase in creatine supply for cows, the present study investigated the effects of 0, 0.3, 0.6 and 0.9 g kg-1 dry matter (DM) of GAA supplementation on lactation performance, nutrient digestion and ruminal fermentation in dairy cows. The study used 40 mid-lactation multiparous Holstein cows and the study duration was 100 days. RESULTS: DM intake was not affected, but milk and milk component yields and feed efficiency increased linearly with increasing GAA addition. The total-tract digestibility of DM, organic matter, neutral detergent fibre, acid detergent fibre and non-fibre carbohydrates increased linearly and that of crude protein increased quadratically with increasing GAA addition. When the addition level of GAA increased, ruminal pH, molar percentages of butyrate, isobutyrate and isovalerate and the acetate-to-propionate ratio decreased linearly, and the total volatile fatty acids concentration and propionate molar percentage also increased linearly, whereas the acetate molar percentage and ammonia-N concentration were unaltered. The activities of fibrolytic enzymes, α-amylase and protease increased linearly. The populations of total bacteria, fungi, Ruminococcus albus, Fibrobacter succinogenes, Ruminococcus flavefaciens, Ruminobacter amylophilus and Prevotella ruminicola increased linearly, whereas protozoa and methanogens decreased linearly with increasing GAA addition. As for the blood metabolites, concentrations of glucose, urea nitrogen and methionine were unchanged, total protein, albumin, creatine and homocysteine increased linearly, and folate decreased linearly with increasing GAA supply. CONCLUSION: The results of the present study indicate that supplementation of GAA improved milk performance and rumen fermentation in lactating dairy cows. © 2022 Society of Chemical Industry.


Asunto(s)
Suplementos Dietéticos , Lactancia , Femenino , Bovinos , Animales , Propionatos/metabolismo , Fermentación , Rumen/metabolismo , Creatina/metabolismo , Detergentes , Alimentación Animal/análisis , Leche/metabolismo , Nutrientes , Digestión , Dieta/veterinaria
11.
Fungal Genet Biol ; 158: 103638, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34798270

RESUMEN

In Aspergillus fumigatus, an opportunistic fungal pathogen causing fatal invasive aspergillosis, N-glycosylation is vital for polarized growth. To investigate its mechanism, two putative L-type lectin genes emp47 (AFUB_032470) and vip36 (AFUB_027870) were identified in A. fumigatus. Deletion of the emp47 or vip36 gene resulted in delayed germination and abnormal polarity. Also, the Δemp47 displayed an increased resistance to azoles whereas the Δvip36 showed an increased susceptibility to amphotericin B. Secretome analysis revealed that 205 proteins were differentially secreted in the Δemp47 and 145 of them were reduced, while 153 proteins displayed a differential secretion and 134 of them were increased in the Δvip36 as compared with that of the wild-type strain. Also, potential cargo glycoproteins of Emp47 and Vip36 were identified by comparative secretome analysis. Our results suggest that Emp47 is responsible for the transport of proteins from endoplasmic reticulum (ER) to Golgi, while Vip36 acts in protein retrieval from Golgi to ER.


Asunto(s)
Aspergillus fumigatus , Secretoma , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Aparato de Golgi , Transporte de Proteínas
12.
Int J Syst Evol Microbiol ; 72(11)2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36355042

RESUMEN

A novel species of the genus Gramella, designated ASW11-100T, was isolated from a tidal flat sediment in the Yellow Sea, PR China. Phylogenetic analysis based on 16S rRNA gene sequences and single-copy orthologous clusters revealed that strain ASW11-100T belonged to the genus Gramella, and exhibited 16S rRNA gene sequence similarities of 98.9, 98.8 and 98.7 % to Gramella sabulilitoris HSMS-1T, Gramella sediminilitoris GHTF-27T and Gramella forsetii KT0803T, respectively. The genome of strain ASW11-100T harbours 2950 protein-coding genes and 105 carbohydrate-active enzymes including 38 glycoside hydrolases. Seventeen of the glycoside hydrolases are organized in five distinct polysaccharide utilization loci, which are predicted to involve in the degradation of starch, glucans, arabinoxylans, arabinomannan, arabinans and arabinogalactans. The genomic DNA G+C content was 37.3 mol%. The digital DNA-DNA hybridization and average nucleotide identity values between strain ASW11-100T and its closely related relatives were in ranges of 19.8-23.9% and 76.6-80.9 %, respectively. Cells of the isolate were Gram-negative, aerobic, non-flagellated and short rod-shaped. Carotenoid pigments were produced, but flexirubin-type pigments were absent. The major fatty acids (>10 %) were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c). The sole respiratory quinone was menaquinone-6 and the major polar lipid was phosphatidylethanolamine. Based on the above polyphasic evidence, strain ASW11-100T should be considered to represent a novel Gramella species, for which the name Gramella sediminis sp. nov. is proposed. The type strain is ASW11-100T (=KCTC 82502T=MCCC 1K05580T).


Asunto(s)
Ácidos Grasos , Agua de Mar , ARN Ribosómico 16S/genética , Filogenia , Composición de Base , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Ácidos Grasos/química , Vitamina K 2 , Glicósido Hidrolasas/genética
13.
Br J Nutr ; 127(9): 1313-1319, 2022 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-34155966

RESUMEN

To investigate the influences of cobalt (Co) and folic acid (FA) on growth performance and rumen fermentation, Holstein male calves (n 40) were randomly assigned to four groups according to their body weights. Cobalt sulphate at 0 or 0·11 mg Co/kg DM and FA at 0 or 7·2 mg/kg DM were used in a 2 × 2 factorial design. Average daily gain was elevated with FA or Co supplementation, but the elevation was greater for supplementing Co in diets without FA than with FA. Supplementing FA or Co increased DM intake and total-tract nutrient digestibility. Rumen pH was unaltered with FA but reduced with Co supplementation. Concentration of rumen total volatile fatty acids was elevated with FA or Co inclusion. Acetate percentage and acetate to propionate ratio were elevated with FA inclusion. Supplementing Co decreased acetate percentage and increased propionate percentage. Activities of xylanase and α-amylase and populations of total bacteria, fungi, protozoa, Ruminococcus albus, Fibrobacter succinogenes and Prevotella ruminicola increased with FA or Co inclusion. Activities of carboxymethyl-cellulase and pectinase increased with FA inclusion and population of methanogens decreased with Co addition. Blood folates increased and homocysteine decreased with FA inclusion. Blood glucose and vitamin B12 increased with Co addition. The data suggested that supplementing 0·11 mg Co/kg DM in diets containing 0·09 mg Co/kg DM increased growth performance and nutrient digestibility but had no improvement on the effects of FA addition in calves.


Asunto(s)
Suplementos Dietéticos , Ácido Fólico , Bovinos , Animales , Masculino , Ácido Fólico/metabolismo , Rumen/metabolismo , Fermentación , Propionatos/metabolismo , Alimentación Animal/análisis , Digestión , Dieta/veterinaria , Cobalto/metabolismo , Cobalto/farmacología , Nutrientes/metabolismo
14.
Curr Microbiol ; 79(11): 350, 2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36209246

RESUMEN

A Gram-negative, facultatively anaerobic, motile, and rod-shaped bacterium, designated ASW11-47 T, was isolated from a tidal flat sediment taken from the coast of Qingdao, PR China. Phylogenetic analysis of 16S rRNA gene sequence showed that strain ASW11-47 T belongs to the genus Salinimicrobium and is most closely related to Salinimicrobium terrae YIM-C338T (98.68% similarity). The length of draft genome is 3,594,457 bp, and DNA G + C content is 40.8 mol%. The values of average nucleotide identity and digital DNA-DNA hybridization between strain ASW11-47 T and closely related strains were in ranges of 75.9-85.9 and 19.7-31.5%, respectively. The major fatty acids (> 10%) were iso-C15:0 and iso-C17:0 3-OH. The predominant respiratory quinone was menaquinone-6 and the major polar lipid was phosphatidylethanolamine. On the basis of genotypic, phenotypic, and chemotaxonomic analysis, strain ASW11-47 T represents a novel species within the genus Salinimicrobium, for which the name Salinimicrobium sediminilitoris sp. nov. is proposed. The type strain is ASW11-47 T (= KCTC 82501 T = MCCC 1K05586T).


Asunto(s)
Fosfatidiletanolaminas , Agua de Mar , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos , Sedimentos Geológicos/microbiología , Nucleótidos , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Análisis de Secuencia de ADN , Vitamina K 2
15.
Ecotoxicol Environ Saf ; 239: 113615, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35567927

RESUMEN

Fine particulate matter (PM2.5) exposure can cause lung injury and a large number of respiratory diseases. Sipeimine is a steroidal alkaloid isolated from Fritillaria roylei which has been associated with anti-inflammatory, antitussive and antiasthmatic properties. In this study, we explored the potential effects of sipeimine against PM2.5-induced lung injury in Sprague Dawley rats. Sipeimine alleviated lung injury caused by PM2.5 and decreased pulmonary edema, inflammation and the levels of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) in the bronchoalveolar lavage fluid. In addition, sipeimine upregulated the glutathione (GSH) expression and downregulated the expression of 4-hydroxynonenal (4-HNE), tissue iron and malondialdehyde (MDA). The downregulation of proteins involved in ferroptosis, including nuclear factor E2-related factor 2 (Nrf2), glutathione peroxidase 4 (GPX4), heme oxygenase-1 (HO-1) and solute carrier family 7 member 11 (SLC7A11) was reversed by sipeimine. The administration of RSL3, a potent ferroptosis-triggering agent, blocked the effects of sipeimine. Using network pharmacology, we found that the effects of sipeimine were presumably mediated through the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. A PI3K inhibitor (LY294002) blocked the PI3K/Akt signaling pathway and reversed the effects of sipeimine. Overall, this study suggested that the protective effect of sipeimine against PM2.5-induced lung injury was mainly mediated through the PI3K/Akt pathway, ultimately leading to a reduction in ferroptosis.


Asunto(s)
Cevanas , Ferroptosis , Lesión Pulmonar , Material Particulado , Animales , Cevanas/farmacología , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/patología , Factor 2 Relacionado con NF-E2/metabolismo , Farmacología en Red , Material Particulado/toxicidad , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley
16.
Ecotoxicol Environ Saf ; 244: 114060, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36115151

RESUMEN

The imbalance of intestinal microbiota and inflammatory response is crucial in the development of lung injury induced by PM2.5. In recent years, probiotics have attracted great attention for their health benefits in inflammatory diseases and regulating intestinal balance, but their intricate mechanisms need further experiments to elucidate. In our research, a rat lung damage model induced by PM2.5 exposure in real environment was established to explore the protective properties of probiotics on PM2.5 exposure injury and its related mechanism. The results indicated that compared with the AF control group, rats in the PM2.5 group gained weight slowly, ate less and had yellow hair. The results of pathological and immunohistochemical examinations showed that the inflammatory infiltration of lung tissue was alleviated after probiotic treatment. The Lung function results also showed the improvement effects of probiotics administration. In addition, probiotics could promote the balance of Th17 and Treg cells, inhibit cytokines expression (TNF-α, IL-6, IL-1ß, IL-17A), and increase the concentration of anti-inflammatory factors (IL-10, TGF-ß). In addition, 16 S rRNA sequence analysis showed that probiotic treatment could reduce microbiota abundance and diversity, increase the abundance of possible beneficial bacteria, and decrease the abundance of bacteria associated with inflammation. In general, probiotic intervention was found to have preventive effects on the occurrence of PM2.5 induced pathological injury, and the mechanism was associate with to the inhibition of inflammatory response, regulation of Th17/Treg balance and maintenance of intestinal internal environment stability.


Asunto(s)
Microbioma Gastrointestinal , Lesión Pulmonar , Neumonía , Probióticos , Animales , Antiinflamatorios/farmacología , Citocinas/metabolismo , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/metabolismo , Lesión Pulmonar/prevención & control , Material Particulado/metabolismo , Neumonía/inducido químicamente , Neumonía/metabolismo , Neumonía/prevención & control , Probióticos/farmacología , Ratas , Linfocitos T Reguladores/metabolismo , Células Th17 , Factor de Crecimiento Transformador beta , Factor de Necrosis Tumoral alfa/metabolismo
17.
Mol Microbiol ; 114(5): 762-774, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32706435

RESUMEN

Like both eukaryotes and bacteria, archaea can decorate proteins with N- and O-linked glycans. Whereas pathways and roles of N-glycosylation have been studied in several model archaeal organisms, little is known of O-glycosylation. To explore commonalities and variations of these two versions of glycosylation, we used Haloarcula hispanica as a model. Our previous work showed that H. hispanica S-layer glycoproteins are modified by an N-linked glucose-α-(1, 2)-[sulfoquinovosamine-ß-(1, 6)-]galactose trisaccharide and an O-linked glucose-α-(1, 4)-galactose disaccharide. Here, we found that H. hispanica membrane contains C60 dolichol phosphate (DolP) as a lipid carrier for glycosylation. As revealed by bioinformatics, gene deletion and phenotype analysis, gene HAH_1571, renamed agl22, encodes a predicted glucosyltransferase that transfers glucose from glucose-DolP onto galactose-DolP to form the glucose-α-(1, 4)-galactose-DolP precursor of the N-glycosylation. Gene HAH_2016, renamed agl23, encodes a putative flippase-associated protein responsible for flipping of hexose-DolPs across the membrane to face the exterior. Our results also suggested that the synthesis of the N- and O-linked glycans onto target protein occurs on the outer surface of the cell using hexose-DolPs as sugar donors. Deletion mutant showed that N- and O-glycosylation are required for growth in the defined medium mimicking the natural habitat of H. hispanica.


Asunto(s)
Haloarcula/genética , Haloarcula/metabolismo , Polisacáridos/metabolismo , Proteínas Arqueales/metabolismo , Glicoproteínas/metabolismo , Glicosilación , Lípidos/fisiología , Glicoproteínas de Membrana/metabolismo , Procesamiento Proteico-Postraduccional
18.
IUBMB Life ; 73(5): 739-760, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33725395

RESUMEN

Gastrointestinal symptoms and liver injury are common in patients with coronavirus disease 2019 (COVID-19). However, profiles of different pharmaceutical interventions used are relatively underexplored. Chinese herbal medicine (CHM) has been increasingly used for patients with COVID-19, but the efficacy of CHM used in COVID-19 on gastrointestinal symptoms and liver functions has not been well studied with definitive results based on the updated studies. The present study aimed at testing the efficacy of CHM on digestive symptoms and liver function (primary outcomes), the aggravation of COVID-19, and the time to viral assay conversion (secondary outcomes), among patients with COVID-19, compared with standard pharmacotherapy. The literature search was undertaken in 11 electronic databases from December 1, 2019 up to November 8, 2020. Appraisal of the evidence was conducted with Cochrane risk of bias tool or Newcastle Ottawa Scale. A random-effects model or subgroup analysis was conducted when significant heterogeneity was identified in the meta-analysis. The certainty of the evidence was assessed with the grading of recommendations assessment, development, and evaluation approach. Forty-eight included trials involving 4,704 participants were included. Meta-analyses favored CHM plus standard pharmacotherapy for COVID-19 on reducing the aggravation of COVID-19 and the time to viral assay conversion compared with standard pharmacotherapy. However, the present CHM as a complementary therapy for treating COVID-19 may not be beneficial for improving most gastrointestinal symptoms and liver function based on the current evidence. More well-conducted trials are warranted to confirm the potential efficacy of CHM furtherly.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Medicamentos Herbarios Chinos/uso terapéutico , Enfermedades Gastrointestinales/tratamiento farmacológico , Hepatopatías/tratamiento farmacológico , Adolescente , Adulto , Anciano , Anorexia/virología , COVID-19/etiología , Diarrea/tratamiento farmacológico , Diarrea/virología , Medicamentos Herbarios Chinos/farmacología , Femenino , Enfermedades Gastrointestinales/virología , Humanos , Hepatopatías/etiología , Hepatopatías/virología , Pruebas de Función Hepática , Masculino , Persona de Mediana Edad , Náusea/tratamiento farmacológico , Náusea/virología , Adulto Joven
19.
J Anim Physiol Anim Nutr (Berl) ; 105(1): 26-34, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33029865

RESUMEN

The objective of this study was to investigate the characteristics of ruminal microbial communities of alpacas (Lama pacos) and sheep (Ovis aries) fed three diets with varying ratios of roughage (corn stalk) to concentrate, 3:7 (LS), 5:5 (MS) and 7:3 (HS). Six alpacas (one-year-old and weighing 29.5 ± 7.1 kg) and six sheep (one-year-old and weighing 27.9 ± 2.7 kg) were used in this study, in a replicated 3 × 3 Latin square experiment. Total protozoa concentration was determined under the microscope; total fungi and methanogens were assessed using quantitative polymerase chain reaction and expressed as a percentage of total bacterial 16S rRNA gene copies; bacterial communities were investigated by targeted 16S rRNA gene (V3-V4 region) sequencing. The percentage of fungi was significantly higher in alpacas than in sheep under the LS diet, while the concentration of protozoa was significantly lower in alpacas under HS, MS and LS diets. The alpha diversity including Shannon, Chao l and ACE indices of bacterial communities was higher in alpacas than in sheep, under the LS diet. A total of 299 genera belonging to 22 phyla were observed in the forestomach of alpaca and sheep, with Bacteroidetes and Firmicutes dominating both animal species. Phyla Armatimonadetes and Fusobacteria, as well as 64 genera, were detected only in alpacas, whereas phyla Acidobacteria and Nitrospira, as well as 44 genera, were found only in sheep. The abundance of cellulolytic bacteria, including Butyrivibrio and Pseudobutyrivibrio, was higher in alpacas than in sheep under all three diets. These differences in the forestomach microbial communities partly explained why alpacas displayed a higher poor-quality roughage digestibility, and a lower methane production. Results also revealed that the adverse effects of high-concentrate diets (70%) were lesser in alpacas than in sheep.


Asunto(s)
Camélidos del Nuevo Mundo , Microbiota , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Fermentación , ARN Ribosómico 16S/genética , Rumen/metabolismo , Ovinos , Zea mays
20.
Anim Biotechnol ; 31(6): 512-519, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31253064

RESUMEN

The study evaluated the effects of branched-chain volatile fatty acids (BCVFA) and fibrolytic enzyme (FE) on rumen development in calves. Forty Holstein male calves at the same ages (15 ± 2.5 days of age) and weights (45 ± 3.3 kg of body weight [BW]) were assigned randomly to four groups with a 2 × 2 factorial arrangement of treatments. Supplemental BCVFA (0 g/d or 18 g/d) and FE (0 g/d or 1.83 g/d) were fed to calves. Data were analyzed as a 2 × 2 factorial arrangement random design by the mixed procedure of SAS. The BCVFA × FE interaction was observed for ruminal propionate, blood growth hormone (GH) and insulin-like growth factor-1 (IGF-1), and GH receptor (GHR) and IGF-1 receptor (IGF-1R) expression in the rumen mucosa. Dry matter intake was higher for BCVFA addition. The higher average daily gain and ruminal volatile fatty acids were observed for BCVFA or FE addition. Stomach weight and the length and width of rumen papillae were higher for BCVFA addition. The higher expression of GHR, IGF-1R and 3-hydroxy-3-methylglutaryl-CoA synthase 1 in rumen mucosa, and blood GH and IGF-1 were observed with BCVFA or FE addition. Blood ß-hydroxybutyrate and acetoacetate were higher for BCVFA addition. The results indicated that rumen development was promoted by BCVFA, but was not affected with FE addition in calves.


Asunto(s)
Alimentación Animal , Celulasa , Ácidos Grasos Volátiles/farmacología , Rumen , Animales , Bovinos , Endo-1,4-beta Xilanasas , Distribución Aleatoria , Rumen/efectos de los fármacos , Rumen/crecimiento & desarrollo , Rumen/metabolismo , Aumento de Peso/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA