Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Food Chem ; 463(Pt 4): 141448, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39348769

RESUMEN

The residual water and amphiphilic compounds such as phospholipids in bulk oil can form reverse micelles, which affect oxidative stability. In this study, the Antarctic krill oil (AKO) samples with different water contents were subjected to accelerated storage. During storage, AKO exhibited oxidative changes, manifested as increased POV, TBARS values, and volatile compound levels but decreased PUFA percentages. Meanwhile, AKO underwent hydrolysis, evidenced by decreased PC, PE, and TG contents but increased FFA contents. Moreover, the degree of lipid oxidation and hydrolysis is dose-dependent with water added. Cryogenic scanning electron microscopy imaging and micelle size distribution measurement proved the presence of reverse micelle, and their size and interfacial area improved with increased water contents. Correlation analysis suggested that lipid oxidation and hydrolysis positively correlated with the size and interfacial area of reverse micelle. Therefore, it is speculated that the oil-water interface may be the site of lipid oxidation and hydrolysis.

2.
Food Chem ; 459: 140376, 2024 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-39002334

RESUMEN

The reddish-orange color of Antarctic krill oil fades during storage, and the mechanism remains unclear. Model systems containing different combinations of astaxanthin (ASTA), phosphatidylethanolamine (PE), and tocopherol were subjected to accelerated storage. Among all groups containing ASTA, only the ones with added PE showed significant fading. Meanwhile, the specific UV-visible absorption (A470 and A495) showed a similar trend. Peroxide value and thiobarbituric acid reactive substances increased during storage, while ASTA and PE contents decreased. Correlation analysis suggested that oxidized PE promoted fading by accelerating the transformation of ASTA. PE content exceeded the critical micelle concentration (1µg/g) indicating the formation of reverse micelles. Molecular docking analysis indicated that PE also interacted with ASTA in an anchor-like manner. Therefore, it is speculated that amphiphilic ASTA is more readily distributed at the oil-water interface of reverse micelles and captured by oxidized PE, which facilitates oxidation transfer, leading to ASTA oxidation and color fading.


Asunto(s)
Color , Euphausiacea , Almacenamiento de Alimentos , Euphausiacea/química , Animales , Simulación del Acoplamiento Molecular , Oxidación-Reducción , Xantófilas/química , Fosfatidiletanolaminas/química , Regiones Antárticas
3.
Ann Med ; 55(2): 2273497, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38060823

RESUMEN

OBJECTIVE: Human error estimating food intake is a major source of bias in nutrition research. Artificial intelligence (AI) methods may reduce bias, but the overall accuracy of AI estimates is unknown. This study was a systematic review of peer-reviewed journal articles comparing fully automated AI-based (e.g. deep learning) methods of dietary assessment from digital images to human assessors and ground truth (e.g. doubly labelled water). MATERIALS AND METHODS: Literature was searched through May 2023 in four electronic databases plus reference mining. Eligible articles reported AI estimated volume, energy, or nutrients. Independent investigators screened articles and extracted data. Potential sources of bias were documented in absence of an applicable risk of bias assessment tool. RESULTS: Database and hand searches identified 14,059 unique publications; fifty-two papers (studies) published from 2010 to 2023 were retained. For food detection and classification, 79% of papers used a convolutional neural network. Common ground truth sources were calculation using nutrient tables (51%) and weighed food (27%). Included papers varied widely in food image databases and results reported, so meta-analytic synthesis could not be conducted. Relative errors were extracted or calculated from 69% of papers. Average overall relative errors (AI vs. ground truth) ranged from 0.10% to 38.3% for calories and 0.09% to 33% for volume, suggesting similar performance. Ranges of relative error were lower when images had single/simple foods. CONCLUSIONS: Relative errors for volume and calorie estimations suggest that AI methods align with - and have the potential to exceed - accuracy of human estimations. However, variability in food image databases and results reported prevented meta-analytic synthesis. The field can advance by testing AI architectures on a limited number of large-scale food image and nutrition databases that the field determines to be adequate for training and testing and by reporting accuracy of at least absolute and relative error for volume or calorie estimations.


These results suggest that AI methods are in line with ­ and have the potential to exceed ­ accuracy of human estimations of nutrient content based on digital food images.Variability in food image databases used and results reported prevented meta-analytic synthesis.The field can advance by testing AI architectures on a limited number of large-scale food image and nutrition databases that the field determines to be accurate and by reporting accuracy of at least absolute and relative error for volume or calorie estimations.Overall, the tools currently available need more development before deployment as stand-alone dietary assessment methods in nutrition research or clinical practice.


Asunto(s)
Inteligencia Artificial , Evaluación Nutricional , Humanos , Dieta , Ingestión de Energía
4.
Foods ; 12(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36900492

RESUMEN

High-purity eicosapentaenoic acid (EPA) ethyl ester (EPA-EE) can be produced from an integrated technique consisting of saponification, ethyl esterification, urea complexation, molecular distillation and column separation. In order to improve the purity and inhibit oxidation, tea polyphenol palmitate (TPP) was added before the procedure of ethyl esterification. Furthermore, through the optimization of process parameters, 2:1 (mass ratio of urea to fish oil, g/g), 6 h (crystallization time) and 4:1 (mass ratio of ethyl alcohol to urea, g/g) were found to be the optimum conditions in the procedure of urea complexation. Distillate (fraction collection), 115 °C (distillation temperature) and one stage (the number of stages) were found to be the optimum conditions for the procedure of molecular distillation. With the addition of TPP and the above optimum conditions, high-purity (96.95%) EPA-EE was finally obtained after column separation.

5.
Foods ; 11(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36496576

RESUMEN

Antarctic krill (Euphausia superba) oil contains high levels of marine omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). In industrial production, krill oil is usually extracted from krill meals by using ethanol as a solvent. Water in the krill meal can be easily extracted by using ethanol as an extraction solvent. During the extraction process, the EPA and DHA are more easily oxidized and degraded when water exists in the ethanol extract of krill oil. Based on the analysis of peroxide value (POV), thiobarbituric acid-reactive substances (TBARS), fatty acid composition, and lipid class composition, the present study indicated that the composite antioxidants (TP-TPP) consist of tea polyphenol (TP) and tea polyphenol palmitate (TPP) had an excellent antioxidant effect. By contrast, adding TP-TPP into ethanol solvent during the extraction process is more effective than adding TP-TPP into krill oil after the extraction process.

6.
Food Sci Nutr ; 10(8): 2804-2812, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35959263

RESUMEN

Through monitoring Rancimat induction time (RIT), peroxide value (POV), and thiobarbituric acid-reactive substances (TBARS) of docosahexaenoic acid (DHA) algae oil and walnut oil during accelerated storage, the effects of the single and the combinations of seven kinds of antioxidants involving ascorbyl palmitate (AP), phytic acid (PA), vitamin E (VE), antioxidant of bamboo leaves (AOB), rosemary extract, tea polyphenols (TP), and tea polyphenol palmitate (TPP) against lipid oxidation were evaluated. RIT, POV, and TBARS results showed that the DHA algae oil sample containing 600 mg/kg TPP revealed the strongest stability and the walnut oil sample containing 450 mg/kg TPP and 100 mg/kg TP revealed the strongest stability. Then, the shelf lives of two oils were predicted from the extrapolation of the linear regression model between Log RIT and temperature. Our results indicated that the optimal antioxidant could prolong the shelf lives of DHA algae oil and walnut oil by 2.31- and 7.74-fold, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA