Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 36(7-8): 391-407, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35487686

RESUMEN

More than 27 yr ago, the vimentin knockout (Vim-/- ) mouse was reported to develop and reproduce without an obvious phenotype, implying that this major cytoskeletal protein was nonessential. Subsequently, comprehensive and careful analyses have revealed numerous phenotypes in Vim-/- mice and their organs, tissues, and cells, frequently reflecting altered responses in the recovery of tissues following various insults or injuries. These findings have been supported by cell-based experiments demonstrating that vimentin intermediate filaments (IFs) play a critical role in regulating cell mechanics and are required to coordinate mechanosensing, transduction, signaling pathways, motility, and inflammatory responses. This review highlights the essential functions of vimentin IFs revealed from studies of Vim-/- mice and cells derived from them.


Asunto(s)
Filamentos Intermedios , Vimentina/metabolismo , Animales , Fenómenos Fisiológicos Celulares , Filamentos Intermedios/genética , Filamentos Intermedios/metabolismo , Ratones , Vimentina/genética
2.
Glia ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39308436

RESUMEN

Alexander disease (AxD) is a rare and severe neurodegenerative disorder caused by mutations in glial fibrillary acidic protein (GFAP). While the exact disease mechanism remains unknown, previous studies suggest that mutant GFAP influences many cellular processes, including cytoskeleton stability, mechanosensing, metabolism, and proteasome function. While most studies have primarily focused on GFAP-expressing astrocytes, GFAP is also expressed by radial glia and neural progenitor cells, prompting questions about the impact of GFAP mutations on central nervous system (CNS) development. In this study, we observed impaired differentiation of astrocytes and neurons in co-cultures of astrocytes and neurons, as well as in neural organoids, both generated from AxD patient-derived induced pluripotent stem (iPS) cells with a GFAPR239C mutation. Leveraging single-cell RNA sequencing (scRNA-seq), we identified distinct cell populations and transcriptomic differences between the mutant GFAP cultures and a corrected isogenic control. These findings were supported by results obtained with immunocytochemistry and proteomics. In co-cultures, the GFAPR239C mutation resulted in an increased abundance of immature cells, while in unguided neural organoids and cortical organoids, we observed altered lineage commitment and reduced abundance of astrocytes. Gene expression analysis revealed increased stress susceptibility, cytoskeletal abnormalities, and altered extracellular matrix and cell-cell communication patterns in the AxD cultures, which also exhibited higher cell death after stress. Overall, our results point to altered cell differentiation in AxD patient-derived iPS-cell models, opening new avenues for AxD research.

3.
Neurochem Res ; 48(4): 1233-1241, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36097103

RESUMEN

Astrocytes perform a range of homeostatic and regulatory tasks that are critical for normal functioning of the central nervous system. In response to an injury or disease, astrocytes undergo a pronounced transformation into a reactive state that involves changes in the expression of many genes and dramatically changes astrocyte morphology and functions. This astrocyte reactivity is highly dependent on the initiating insult and pathological context. C3a is a peptide generated by the proteolytic cleavage of the third complement component. C3a has been shown to exert neuroprotective effects, stimulate neural plasticity and promote astrocyte survival but can also contribute to synapse loss, Alzheimer's disease type neurodegeneration and blood-brain barrier dysfunction. To test the hypothesis that C3a elicits differential effects on astrocytes depending on their reactivity state, we measured the expression of Gfap, Nes, C3ar1, C3, Ngf, Tnf and Il1b in primary mouse cortical astrocytes after chemical ischemia, after exposure to lipopolysaccharide (LPS) as well as in control naïve astrocytes. We found that C3a down-regulated the expression of Gfap, C3 and Nes in astrocytes after ischemia. Further, C3a increased the expression of Tnf and Il1b in naive astrocytes and the expression of Nes in astrocytes exposed to LPS but did not affect the expression of C3ar1 or Ngf. Jointly, these results provide the first evidence that the complement peptide C3a modulates the responses of astrocytes in a highly context-dependent manner.


Asunto(s)
Astrocitos , Lipopolisacáridos , Ratones , Animales , Astrocitos/metabolismo , Lipopolisacáridos/farmacología , Barrera Hematoencefálica/metabolismo , Complemento C3a/metabolismo , Péptidos/metabolismo
4.
Physiol Rev ; 94(4): 1077-98, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25287860

RESUMEN

Astrocytes are the most abundant cells in the central nervous system (CNS) that provide nutrients, recycle neurotransmitters, as well as fulfill a wide range of other homeostasis maintaining functions. During the past two decades, astrocytes emerged also as increasingly important regulators of neuronal functions including the generation of new nerve cells and structural as well as functional synapse remodeling. Reactive gliosis or reactive astrogliosis is a term coined for the morphological and functional changes seen in astroglial cells/astrocytes responding to CNS injury and other neurological diseases. Whereas this defensive reaction of astrocytes is conceivably aimed at handling the acute stress, limiting tissue damage, and restoring homeostasis, it may also inhibit adaptive neural plasticity mechanisms underlying recovery of function. Understanding the multifaceted roles of astrocytes in the healthy and diseased CNS will undoubtedly contribute to the development of treatment strategies that will, in a context-dependent manner and at appropriate time points, modulate reactive astrogliosis to promote brain repair and reduce the neurological impairment.


Asunto(s)
Astrocitos/citología , Astrocitos/fisiología , Animales , Encéfalo/citología , Encéfalo/patología , Encéfalo/fisiología , Humanos , Enfermedades Neurodegenerativas/patología , Regeneración
5.
Cardiovasc Diabetol ; 20(1): 240, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34937562

RESUMEN

BACKGROUND: Post-stroke functional recovery is severely impaired by type 2 diabetes (T2D). This is an important clinical problem since T2D is one of the most common diseases. Because weight loss-based strategies have been shown to decrease stroke risk in people with T2D, we aimed to investigate whether diet-induced weight loss can also improve post-stroke functional recovery and identify some of the underlying mechanisms. METHODS: T2D/obesity was induced by 6 months of high-fat diet (HFD). Weight loss was achieved by a short- or long-term dietary change, replacing HFD with standard diet for 2 or 4 months, respectively. Stroke was induced by middle cerebral artery occlusion and post-stroke recovery was assessed by sensorimotor tests. Mechanisms involved in neurovascular damage in the post-stroke recovery phase, i.e. neuroinflammation, impaired angiogenesis and cellular atrophy of GABAergic parvalbumin (PV)+ interneurons were assessed by immunohistochemistry/quantitative microscopy. RESULTS: Both short- and long-term dietary change led to similar weight loss. However, only the latter enhanced functional recovery after stroke. This effect was associated with pre-stroke normalization of fasting glucose and insulin resistance, and with the reduction of T2D-induced cellular atrophy of PV+ interneurons. Moreover, stroke recovery was associated with decreased T2D-induced neuroinflammation and reduced astrocyte reactivity in the contralateral striatum. CONCLUSION: The global diabetes epidemic will dramatically increase the number of people in need of post-stroke treatment and care. Our results suggest that diet-induced weight loss leading to pre-stroke normalization of glucose metabolism has great potential to reduce the sequelae of stroke in the diabetic population.


Asunto(s)
Glucemia/metabolismo , Encéfalo/fisiopatología , Diabetes Mellitus Tipo 2/dietoterapia , Infarto de la Arteria Cerebral Media/dietoterapia , Obesidad/dietoterapia , Accidente Cerebrovascular/dietoterapia , Pérdida de Peso , Animales , Conducta Animal , Biomarcadores/sangre , Encéfalo/metabolismo , Encéfalo/patología , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/fisiopatología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Control Glucémico , Infarto de la Arteria Cerebral Media/sangre , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/fisiopatología , Masculino , Ratones Endogámicos C57BL , Obesidad/sangre , Obesidad/fisiopatología , Recuperación de la Función , Accidente Cerebrovascular/sangre , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/fisiopatología , Factores de Tiempo
6.
Neurochem Res ; 46(10): 2626-2637, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34379293

RESUMEN

Ischemic stroke is a major cause of disability. No efficient therapy is currently available, except for the removal of the occluding blood clot during the first hours after symptom onset. Loss of function after stroke is due to cell death in the infarcted tissue, cell dysfunction in the peri-infarct region, as well as dysfunction and neurodegeneration in remote brain areas. Plasticity responses in spared brain regions are a major contributor to functional recovery, while secondary neurodegeneration in remote regions is associated with depression and impedes the long-term outcome after stroke. Hypoxic-ischemic encephalopathy due to birth asphyxia is the leading cause of neurological disability resulting from birth complications. Despite major progress in neonatal care, approximately 50% of survivors develop complications such as mental retardation, cerebral palsy or epilepsy. The C3a receptor (C3aR) is expressed by many cell types including neurons and glia. While there is a body of evidence for its deleterious effects in the acute phase after ischemic injury to the adult brain, C3aR signaling contributes to better outcome in the post-acute and chronic phase after ischemic stroke in adults and in the ischemic immature brain. Here we discuss recent insights into the novel roles of C3aR signaling in the ischemic brain with focus on the therapeutic opportunities of modulating C3aR activity to improve the outcome after ischemic stroke and birth asphyxia.


Asunto(s)
Encéfalo/metabolismo , Accidente Cerebrovascular Isquémico/fisiopatología , Receptores de Complemento/metabolismo , Animales , Encéfalo/patología , Complemento C3a/metabolismo , Complemento C3a/fisiología , Humanos , Accidente Cerebrovascular Isquémico/metabolismo , Microglía/metabolismo , Neurogénesis/fisiología , Plasticidad Neuronal/fisiología , Receptores de Complemento/fisiología , Recuperación de la Función/fisiología
7.
Eur J Neurol ; 28(7): 2218-2228, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33811783

RESUMEN

BACKGROUND AND PURPOSE: Although functional recovery is most pronounced in the first 6 months after stroke, improvement is possible also in the late phase. The value of plasma neurofilament light chain (NfL), a biomarker of axonal injury and secondary neurodegeneration, was explored for the prediction of functional improvement in the late phase after stroke. METHODS: Baseline plasma NfL levels were measured in 115 participants of a trial on the efficacy of multimodal rehabilitation in the late phase after stroke. The association between NfL levels, impairment in balance, gait and cognitive domains, and improvement 3 and 9 months later was determined. RESULTS: Plasma NfL levels were associated with the degree of impairment in all three domains. Individuals with meaningful improvement in balance and gait capacity had higher plasma NfL levels compared with non-improvers (p = 0.001 and p = 0.018, respectively). Higher NfL levels were associated with improvement in balance (odds ratio [OR] 2.34, 95% confidence interval [CI] 1.35-4.27, p = 0.004) and gait (OR 2.27, 95% CI 1.25-4.32, p = 0.009). Elevated plasma NfL levels showed a positive predictive value for cognitive improvement, and this effect was specific for the intervention targeting the cognitive domain. The association of NfL levels with cognitive improvement withstood correction for baseline impairment, age and total years of schooling (OR 7.54, 95% CI 1.52-45.66, p = 0.018). CONCLUSIONS: In addition to its established role as a biomarker in the acute phase, elevated circulating NfL levels may predict functional improvement in the late phase after stroke. Our results should prompt further studies into the use of plasma NfL as a biomarker in the late phase after stroke.


Asunto(s)
Filamentos Intermedios , Accidente Cerebrovascular , Biomarcadores , Humanos , Proteínas de Neurofilamentos , Valor Predictivo de las Pruebas , Accidente Cerebrovascular/complicaciones
8.
Proc Natl Acad Sci U S A ; 115(51): E12063-E12072, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30509997

RESUMEN

Rheumatoid arthritis (RA) is an inflammatory joint disease with a neurological component including depression, cognitive deficits, and pain, which substantially affect patients' quality of daily life. Insulin-like growth factor 1 receptor (IGF1R) signaling is one of the factors in RA pathogenesis as well as a known regulator of adult neurogenesis. The purpose of this study was to investigate the association between IGF1R signaling and the neurological symptoms in RA. In experimental RA, we demonstrated that arthritis induced enrichment of IBA1+ microglia in the hippocampus. This coincided with inhibitory phosphorylation of insulin receptor substrate 1 (IRS1) and up-regulation of IGF1R in the pyramidal cell layer of the cornus ammoni and in the dentate gyrus, reproducing the molecular features of the IGF1/insulin resistance. The aberrant IGF1R signaling was associated with reduced hippocampal neurogenesis, smaller hippocampus, and increased immobility of RA mice. Inhibition of IGF1R in experimental RA led to a reduction of IRS1 inhibition and partial improvement of neurogenesis. Evaluation of physical functioning and brain imaging in RA patients revealed that enhanced functional disability is linked with smaller hippocampus volume and aberrant IGF1R/IRS1 signaling. These results point to abnormal IGF1R signaling in the brain as a mediator of neurological sequelae in RA and provide support for the potentially reversible nature of hippocampal changes.


Asunto(s)
Artritis Reumatoide/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Inflamación/metabolismo , Receptor IGF Tipo 1/antagonistas & inhibidores , Receptor IGF Tipo 1/metabolismo , Transducción de Señal/efectos de los fármacos , Adulto , Anciano , Animales , Artritis Reumatoide/tratamiento farmacológico , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Encéfalo/patología , Giro Dentado/metabolismo , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Humanos , Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina , Masculino , Ratones , Persona de Mediana Edad , Neurogénesis/efectos de los fármacos , Dolor , Dimensión del Dolor , Fosforilación , Receptores de Somatomedina/antagonistas & inhibidores , Receptores de Somatomedina/metabolismo , Regulación hacia Arriba , Adulto Joven
9.
Neurochem Res ; 45(1): 215-220, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31562576

RESUMEN

The intermediate filament protein nestin is expressed by neural stem cells, but also by some astrocytes in the neurogenic niche of the hippocampus in the adult rodent brain. We recently reported that nestin-deficient (Nes-/-) mice showed increased adult hippocampal neurogenesis, reduced Notch signaling from Nes-/- astrocytes to the neural stem cells, and impaired long-term memory. Here we assessed learning and memory of Nes-/- mice in a home cage set up using the IntelliCage system, in which the mice learn in which cage corner a nose poke earns access to drinking water. Nes-/- and wildtype mice showed comparable place learning assessed as the incorrect corner visit ratio and the incorrect nose poke ratio. However, during reversal place learning, a more challenging task, Nes-/- mice, compared to wildtype mice, showed improved learning over time demonstrated by the incorrect visit ratio and improved memory extinction over time assessed as nose pokes per visit to the previous drinking corner. In addition, Nes-/- mice showed increased explorative activity as judged by the increased total numbers of corner visits and nose pokes. We conclude that Nes-/- mice exhibit improved reversal place learning and memory extinction, a finding which together with the previous results supports the concept of the dual role of hippocampal neurogenesis in cognitive functions.


Asunto(s)
Conducta Exploratoria/fisiología , Memoria/fisiología , Actividad Motora/fisiología , Nestina/deficiencia , Aprendizaje Inverso/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
10.
Cereb Cortex ; 29(10): 4050-4066, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-30605503

RESUMEN

The intermediate filament (nanofilament) protein nestin is a marker of neural stem cells, but its role in neurogenesis, including adult neurogenesis, remains unclear. Here, we investigated the role of nestin in neurogenesis in adult nestin-deficient (Nes-/-) mice. We found that the proliferation of Nes-/- neural stem cells was not altered, but neurogenesis in the hippocampal dentate gyrus of Nes-/- mice was increased. Surprisingly, the proneurogenic effect of nestin deficiency was mediated by its function in the astrocyte niche. Through its role in Notch signaling from astrocytes to neural stem cells, nestin negatively regulates neuronal differentiation and survival; however, its expression in neural stem cells is not required for normal neurogenesis. In behavioral studies, nestin deficiency in mice did not affect associative learning but was associated with impaired long-term memory.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Nestina/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Receptores Notch/metabolismo , Animales , Astrocitos/citología , Diferenciación Celular , Proliferación Celular , Técnicas de Cocultivo , Proteína Jagged-1/metabolismo , Masculino , Memoria a Largo Plazo/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Nestina/genética , Ratas , Transducción de Señal
11.
Biol Chem ; 400(9): 1157-1162, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-30995202

RESUMEN

Intermediate filaments (nanofilaments) have many functions, especially in response to cellular stress. Mice lacking vimentin (Vim-/-) display phenotypes reflecting reduced levels of cell activation and ability to counteract stress, for example, decreased reactivity of astrocytes after neurotrauma, decreased migration of astrocytes and fibroblasts, attenuated inflammation and fibrosis in lung injury, delayed wound healing, impaired vascular adaptation to nephrectomy, impaired transendothelial migration of lymphocytes and attenuated atherosclerosis. To address the role of vimentin in fat accumulation, we assessed the body weight and fat by dual-energy X-ray absorptiometry (DEXA) in Vim-/- and matched wildtype (WT) mice. While the weight of 1.5-month-old Vim-/- and WT mice was comparable, Vim-/- mice showed decreased body weight at 3.5, 5.5 and 8.5 months (males by 19-22%, females by 18-29%). At 8.5 months, Vim-/- males and females had less body fat compared to WT mice (a decrease by 24%, p < 0.05, and 33%, p < 0.0001, respectively). The body mass index in 8.5 months old Vim-/- mice was lower in males (6.8 vs. 7.8, p < 0.005) and females (6.0 vs. 7.7, p < 0.0001) despite the slightly lower body length of Vim-/- mice. Increased mortality was observed in adult Vim-/- males. We conclude that vimentin is required for the normal accumulation of body fat.


Asunto(s)
Tejido Adiposo , Vimentina/fisiología , Absorciometría de Fotón , Tejido Adiposo/diagnóstico por imagen , Alimentación Animal , Animales , Peso Corporal , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Vimentina/genética
12.
Biol Chem ; 400(9): 1147-1156, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31063456

RESUMEN

Intermediate filaments (also termed nanofilaments) are involved in many cellular functions and play important roles in cellular responses to stress. The upregulation of glial fibrillary acidic protein (GFAP) and vimentin (Vim), intermediate filament proteins of astrocytes, is the hallmark of astrocyte activation and reactive gliosis in response to injury, ischemia or neurodegeneration. Reactive gliosis is essential for the protective role of astrocytes at acute stages of neurotrauma or ischemic stroke. However, GFAP and Vim were also linked to neural plasticity and regenerative responses in healthy and injured brain. Mice deficient for GFAP and vimentin (GFAP-/-Vim-/-) exhibit increased post-traumatic synaptic plasticity and increased basal and post-traumatic hippocampal neurogenesis. Here we assessed the locomotor and exploratory behavior of GFAP-/-Vim-/- mice, their learning, memory and memory extinction, by using the open field, object recognition and Morris water maze tests, trace fear conditioning, and by recording reversal learning in IntelliCages. While the locomotion, exploratory behavior and learning of GFAP-/-Vim-/- mice, as assessed by object recognition, the Morris water maze, and trace fear conditioning tests, were comparable to wildtype mice, GFAP-/-Vim-/- mice showed more pronounced memory extinction when tested in IntelliCages, a finding compatible with the scenario of an increased rate of reorganization of the hippocampal circuitry.


Asunto(s)
Proteína Ácida Fibrilar de la Glía/fisiología , Aprendizaje/fisiología , Memoria/fisiología , Vimentina/fisiología , Animales , Proteína Ácida Fibrilar de la Glía/genética , Hipocampo/fisiología , Filamentos Intermedios/metabolismo , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Noqueados , Neurogénesis , Vimentina/genética
13.
Cereb Cortex ; 27(12): 5672-5682, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27979877

RESUMEN

Adult neurogenesis in human brain is known to occur in the hippocampus, the subventricular zone, and the striatum. Neural progenitor cells (NPCs) were reported in the cortex of epilepsy patients; however, their identity is not known. Since astrocytes were proposed as the source of neural progenitors in both healthy and diseased brain, we tested the hypothesis that NPCs in the epileptic cortex originate from reactive, alternatively, de-differentiated astrocytes that express glutamate aspartate transporter (GLAST). We assessed the capacity to form neurospheres and the differentiation potential of cells dissociated from fresh cortical tissue from patients who underwent surgical treatment for pharmacologically intractable epilepsy. Neurospheres were generated from 57% of cases (8/14). Upon differentiation, the neurosphere cells gave rise to neurons, oligodendrocytes, and astrocytes. Sorting of dissociated cells showed that only cells negative for GLAST formed neurospheres. In conclusion, we show that cells with neural stem cell properties are present in brain cortex of epilepsy patients, and that these cells are not GLAST-positive astrocytes.


Asunto(s)
Astrocitos/metabolismo , Corteza Cerebral/metabolismo , Epilepsia Refractaria/metabolismo , Transportador 1 de Aminoácidos Excitadores/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Adolescente , Adulto , Astrocitos/patología , Células Cultivadas , Corteza Cerebral/patología , Corteza Cerebral/cirugía , Niño , Preescolar , Epilepsia Refractaria/patología , Epilepsia Refractaria/cirugía , Femenino , Sustancia Gris/metabolismo , Sustancia Gris/patología , Sustancia Gris/cirugía , Humanos , Masculino , Persona de Mediana Edad , Células Madre Multipotentes/metabolismo , Células Madre Multipotentes/patología , Células-Madre Neurales/patología , Adulto Joven
14.
Cereb Cortex ; 27(6): 3360-3377, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28398520

RESUMEN

Microglia and astrocytes have been considered until now as cells with very distinct identities. Here, we assessed the heterogeneity within microglia/monocyte cell population in mouse hippocampus and determined their response to injury, by using single-cell gene expression profiling of cells isolated from uninjured and deafferented hippocampus. We found that in individual cells, microglial markers Cx3cr1, Aif1, Itgam, and Cd68 were co-expressed. Interestingly, injury led to the co-expression of the astrocyte marker Gfap in a subpopulation of Cx3cr1-expressing cells from both the injured and contralesional hippocampus. Cells co-expressing astrocyte and microglia markers were also detected in the in vitro LPS activation/injury model and in sections from human brain affected by stroke, Alzheimer's disease, and Lewy body dementia. Our findings indicate that injury and chronic neurodegeneration lead to the appearance of cells that share molecular characteristics of both microglia and astrocytes, 2 cell types with distinct embryologic origin and function.


Asunto(s)
Astrocitos/patología , Lesiones Encefálicas/patología , Corteza Entorrinal/patología , Regulación de la Expresión Génica/fisiología , Microglía/patología , Enfermedad de Alzheimer/patología , Animales , Factor Inductor de la Apoptosis/genética , Factor Inductor de la Apoptosis/metabolismo , Astrocitos/metabolismo , Lesiones Encefálicas/metabolismo , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Hipoxia de la Célula/efectos de los fármacos , Células Cultivadas , Demencia/patología , Proteína Ácida Fibrilar de la Glía/metabolismo , Glucosa/deficiencia , Hipocampo/patología , Humanos , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/metabolismo
15.
Biochim Biophys Acta ; 1862(3): 483-91, 2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-26655603

RESUMEN

Astrocytes maintain the homeostasis of the central nervous system (CNS) by e.g. recycling of neurotransmitters and providing nutrients to neurons. Astrocytes function also as key regulators of synaptic plasticity and adult neurogenesis. Any insult to the CNS tissue triggers a range of molecular, morphological and functional changes of astrocytes jointly called reactive (astro)gliosis. Reactive (astro)gliosis is highly heterogeneous and also context-dependent process that aims at the restoration of homeostasis and limits tissue damage. However, under some circumstances, dysfunctional (astro)gliosis can become detrimental and inhibit adaptive neural plasticity mechanisms needed for functional recovery. Understanding the multifaceted and context-specific functions of astrocytes will contribute to the development of novel therapeutic strategies that, when applied at the right time-point, will improve the outcome of diverse neurological disorders. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.


Asunto(s)
Astrocitos/patología , Enfermedades del Sistema Nervioso Central/patología , Gliosis/patología , Animales , Sistema Nervioso Central/patología , Humanos , Enfermedades Neurodegenerativas/patología , Accidente Cerebrovascular/patología
16.
Stroke ; 48(7): 1916-1924, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28619985

RESUMEN

BACKGROUND AND PURPOSE: Treatments that improve function in late phase after stroke are urgently needed. We assessed whether multimodal interventions based on rhythm-and-music therapy or horse-riding therapy could lead to increased perceived recovery and functional improvement in a mixed population of individuals in late phase after stroke. METHODS: Participants were assigned to rhythm-and-music therapy, horse-riding therapy, or control using concealed randomization, stratified with respect to sex and stroke laterality. Therapy was given twice a week for 12 weeks. The primary outcome was change in participants' perception of stroke recovery as assessed by the Stroke Impact Scale with an intention-to-treat analysis. Secondary objective outcome measures were changes in balance, gait, grip strength, and cognition. Blinded assessments were performed at baseline, postintervention, and at 3- and 6-month follow-up. RESULTS: One hundred twenty-three participants were assigned to rhythm-and-music therapy (n=41), horse-riding therapy (n=41), or control (n=41). Post-intervention, the perception of stroke recovery (mean change from baseline on a scale ranging from 1 to 100) was higher among rhythm-and-music therapy (5.2 [95% confidence interval, 0.79-9.61]) and horse-riding therapy participants (9.8 [95% confidence interval, 6.00-13.66]), compared with controls (-0.5 [-3.20 to 2.28]); P=0.001 (1-way ANOVA). The improvements were sustained in both intervention groups 6 months later, and corresponding gains were observed for the secondary outcomes. CONCLUSIONS: Multimodal interventions can improve long-term perception of recovery, as well as balance, gait, grip strength, and working memory in a mixed population of individuals in late phase after stroke. CLINICAL TRIAL REGISTRATION: URL: http//www.ClinicalTrials.gov. Unique identifier: NCT01372059.


Asunto(s)
Terapía Asistida por Caballos/métodos , Musicoterapia/métodos , Evaluación de Resultado en la Atención de Salud/métodos , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular , Cuidados Posteriores , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Método Simple Ciego , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/psicología , Accidente Cerebrovascular/terapia
17.
Exp Eye Res ; 157: 28-33, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28153739

RESUMEN

This review arose from a discussion of regenerative therapies to treat optic nerve degeneration in glaucoma at the 2015 Lasker/IRRF Initiative on Astrocytes and Glaucomatous Neurodegeneration. In addition to the authors, participants included Jonathan Crowston, Andrew Huberman, Elaine Johnson, Richard Lu, Hemai Phatnami, Rebecca Sappington, and Don Zack. Glaucoma is a neurodegenerative disease of the optic nerve, and is the leading cause of irreversible blindness worldwide. The disease progresses as sensitivity to intraocular pressure (IOP) is conveyed through the optic nerve head to distal retinal ganglion cell (RGC) projections. Because the nerve and retina are components of the central nervous system (CNS), their intrinsic regenerative capacity is limited. However, recent research in regenerative therapies has resulted in multiple breakthroughs that may unlock the optic nerve's regenerative potential. Increasing levels of Schwann-cell derived trophic factors and reducing potent cell-intrinsic suppressors of regeneration have resulted in axonal regeneration even beyond the optic chiasm. Despite this success, many challenges remain. RGC axons must be able to form new connections with their appropriate targets in central brain regions and these connections must be retinotopically correct. Furthermore, for new axons penetrating the optic projection, oligodendrocyte glia must provide myelination. Additionally, reactive gliosis and inflammation that increase the regenerative capacity must be outweigh pro-apoptotic processes to create an environment within which maximal regeneration can occur.


Asunto(s)
Glaucoma/terapia , Degeneración Nerviosa/terapia , Regeneración Nerviosa/fisiología , Neuroglía/fisiología , Disco Óptico/fisiología , Enfermedades del Nervio Óptico/terapia , Medicina Regenerativa , Animales , Humanos , Células Ganglionares de la Retina/fisiología
18.
J Neurochem ; 138(5): 653-93, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27248001

RESUMEN

Neuroinflammation is critically involved in numerous neurodegenerative diseases, and key signaling steps of innate immune activation hence represent promising therapeutic targets. This mini review series originated from the 4th Venusberg Meeting on Neuroinflammation held in Bonn, Germany, 7-9th May 2015, presenting updates on innate immunity in acute brain injury and chronic neurodegenerative disorders, such as traumatic brain injury and Alzheimer disease, on the role of astrocytes and microglia, as well as technical developments that may help elucidate neuroinflammatory mechanisms and establish clinical relevance. In this meeting report, a brief overview of physiological and pathological microglia morphology is followed by a synopsis on PGE2 receptors, insights into the role of arginine metabolism and further relevant aspects of neuroinflammation in various clinical settings, and concluded by a presentation of technical challenges and solutions when working with microglia and astrocyte cultures. Microglial ontogeny and induced pluripotent stem cell-derived microglia, advances of TREM2 signaling, and the cytokine paradox in Alzheimer's disease are further contributions to this article. Neuroinflammation is critically involved in numerous neurodegenerative diseases, and key signaling steps of innate immune activation hence represent promising therapeutic targets. This mini review series originated from the 4th Venusberg Meeting on Neuroinflammation held in Bonn, Germany, 7-9th May 2015, presenting updates on innate immunity in acute brain injury and chronic neurodegenerative disorders, such as traumatic brain injury and Alzheimer's disease, on the role of astrocytes and microglia, as well as technical developments that may help elucidate neuroinflammatory mechanisms and establish clinical relevance. In this meeting report, a brief overview on physiological and pathological microglia morphology is followed by a synopsis on PGE2 receptors, insights into the role of arginine metabolism and further relevant aspects of neuroinflammation in various clinical settings, and concluded by a presentation of technical challenges and solutions when working with microglia cultures. Microglial ontogeny and induced pluripotent stem cell-derived microglia, advances of TREM2 signaling, and the cytokine paradox in Alzheimer's disease are further contributions to this article.


Asunto(s)
Astrocitos/metabolismo , Sistema Nervioso Central/metabolismo , Inmunidad Innata/inmunología , Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Animales , Sistema Nervioso Central/inmunología , Humanos , Inflamación/inmunología , Inflamación/patología , Enfermedades Neurodegenerativas/inmunología
19.
Acta Neuropathol ; 131(3): 323-45, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26671410

RESUMEN

The neurone-centred view of the past disregarded or downplayed the role of astroglia as a primary component in the pathogenesis of neurological diseases. As this concept is changing, so is also the perceived role of astrocytes in the healthy and diseased brain and spinal cord. We have started to unravel the different signalling mechanisms that trigger specific molecular, morphological and functional changes in reactive astrocytes that are critical for repairing tissue and maintaining function in CNS pathologies, such as neurotrauma, stroke, or neurodegenerative diseases. An increasing body of evidence shows that the effects of astrogliosis on the neural tissue and its functions are not uniform or stereotypic, but vary in a context-specific manner from astrogliosis being an adaptive beneficial response under some circumstances to a maladaptive and deleterious process in another context. There is a growing support for the concept of astrocytopathies in which the disruption of normal astrocyte functions, astrodegeneration or dysfunctional/maladaptive astrogliosis are the primary cause or the main factor in neurological dysfunction and disease. This review describes the multiple roles of astrocytes in the healthy CNS, discusses the diversity of astroglial responses in neurological disorders and argues that targeting astrocytes may represent an effective therapeutic strategy for Alexander disease, neurotrauma, stroke, epilepsy and Alzheimer's disease as well as other neurodegenerative diseases.


Asunto(s)
Astrocitos/patología , Enfermedades del Sistema Nervioso Central/patología , Animales , Humanos
20.
FASEB J ; 29(12): 4815-28, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26251181

RESUMEN

Vimentin (Vim) and glial fibrillary acidic protein (GFAP) are important components of the intermediate filament (IF) (or nanofilament) system of astroglial cells. We conducted full-field electroretinogram (ERG) recordings and found that whereas photoreceptor responses (a-wave) were normal in uninjured GFAP(-/-)Vim(-/-) mice, b-wave amplitudes were increased. Moreover, we found that Kir (inward rectifier K(+)) channel protein expression was reduced in the retinas of GFAP(-/-)Vim(-/-) mice and that Kir-mediated current amplitudes were lower in Müller glial cells isolated from these mice. Studies have shown that the IF system, in addition, is involved in the retinal response to injury and that attenuated Müller cell reactivity and reduced photoreceptor cell loss are observed in IF-deficient mice after experimental retinal detachment. We investigated whether the lack of IF proteins would affect cell survival in a retinal ischemia-reperfusion model. We found that although cell loss was induced in both genotypes, the number of surviving cells in the inner retina was lower in IF-deficient mice. Our findings thus show that the inability to produce GFAP and Vim affects normal retinal physiology and that the effect of IF deficiency on retinal cell survival differs, depending on the underlying pathologic condition.


Asunto(s)
Proteína Ácida Fibrilar de la Glía/genética , Retina/fisiopatología , Vimentina/genética , Animales , Supervivencia Celular , Electrorretinografía , Isquemia/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Placa-Clamp , Vasos Retinianos/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA