Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Cell Biochem ; 120(6): 9992-10000, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30548323

RESUMEN

PURPOSE: We hypothesized that vitamin D decreases rates of adenosine formation in human cutaneous melanoma cells through the inhibition of extracellular adenosine 5'-triphosphate breakdown, thereby affecting tumor cell viability. Therefore, the objective of this study was to explore the mechanisms of action of 1α, 25-dihydroxyvitamin D3 (1,25(OH)2 D3) on the activity and expression of ectonucleotidases in cutaneous melanoma cells. METHODS: A human melanoma cell line, SK-Mel-28, was treated with 1 to 50 nM of the active vitamin D metabolite (1,25(OH)2 D3) over 24 hours, followed by determination of NTPDase1/CD39 and ecto-5'-nucleotidase/CD73 activity and expression rates of the purinergic system-related NTPDASE1, NT5E and adenosine deaminase and vitamin D receptor. An 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay was used to evaluate cellular viability. RESULTS: 1,25(OH)2 D3 decreased adenosine monophosphate hydrolysis via ecto-5'-nucleotidase/CD73 and expression of CD73, but did not change NTPDase1/CD39 activity; it increased the CD39 expression. We also observed an increase of cell viability at 1 nM, but this viability decreased as the concentrations of vitamin D active metabolite increased to 50 nM. There were no differences in gene expression levels. CONCLUSION: To the best of our knowledge, we showed for the first time a mechanism of control of adenosine production via modulation of the purinergic system in cutaneous melanoma cells treated with the active metabolite of vitamin D. This study provides original information regarding mechanisms, in which vitamin D plays a key role in preventing tumor progression in human melanoma cells.


Asunto(s)
5'-Nucleotidasa/biosíntesis , Calcitriol/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Melanoma/enzimología , Proteínas de Neoplasias/biosíntesis , Neoplasias Cutáneas/enzimología , 5'-Nucleotidasa/genética , Línea Celular Tumoral , Proteínas Ligadas a GPI/biosíntesis , Proteínas Ligadas a GPI/genética , Humanos , Melanoma/genética , Melanoma/patología , Proteínas de Neoplasias/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología
2.
J Cell Biochem ; 120(3): 3232-3242, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30230598

RESUMEN

Sepsis is a generalized infection that involves alterations in inflammatory parameters, oxidant status, and purinergic signaling in many tissues. Physical exercise has emerged as a tool to prevent this disease because of its anti-inflammatory and antioxidant properties. Thus, in this study, we investigated the effects of physical exercise on preventing alterations in purinergic system components, oxidative stress, and inflammatory parameters in lipopolysaccharide (LPS)-induced sepsis in rats. Male Wistar rats were divided into four groups: control, exercise (EX), LPS, and EX+LPS. The resisted physical exercise was performed for 12 weeks on a ladder with 1 m height. After 72 hours of the last exercise session, the animals received 2.5 mg/kg of LPS for induction of sepsis, and after 24 hours, lungs and blood samples were collected for analysis. The results showed that the exercise protocol used was able to prevent, in septic animals: (1) the increase in body temperature; (2) the increase of lipid peroxidation and reactive species levels in the lung, (3) the increase in adenosine triphosphate levels in serum; (4) the change in the activity of the enzymes ectonucleotidases in lymphocytes, partially; (5) the change in the density of purinergic enzymes and receptors in the lung, and (6) the increase of IL-6 and IL-1ß gene expression. Our results revealed the involvement of purinergic signaling and oxidative damage in the mechanisms by which exercise prevents sepsis aggravations. Therefore, the regular practice of physical exercise is encouraged as a better way to prepare the body against sepsis complications.


Asunto(s)
Lipopolisacáridos/toxicidad , Condicionamiento Físico Animal/fisiología , Sepsis/inducido químicamente , Sepsis/prevención & control , Animales , Antioxidantes/metabolismo , Catalasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Sepsis/metabolismo , Superóxido Dismutasa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
3.
Mol Biol Rep ; 46(2): 2085-2092, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30719606

RESUMEN

Cutaneous melanoma (CM) is an extremely aggressive cancer presenting low survival and high mortality. The vast majority of patients affected by this disease does not respond or show resistance to the chemotherapeutic drugs, which makes the treatment ineffective. In this sense, the necessity for the development of new agents to assist in CM therapy is extremely important. One of the sources of great interest in this search are compounds of natural origin. Among these compounds, caffeic acid has demonstrated a broad spectrum of pharmacological activities as well as antitumor effects in some types of cancer. Therefore, the objective of this work was to investigate the possible antitumor effect of caffeic acid on the SK-Mel-28 cell line, human CM cells. Cells were cultured in flasks with culture medium containing fetal bovine serum, antibiotic, and antifungal, and maintained in ideal conditions. Cells were treated with 25 µM, 50 µM, 100 µM, 150 µM and 200 µM of caffeic acid and dacarbazine at 1 mg/mL. We verified the effect on cell viability and cell death, apoptosis, cell cycle, colony formation and gene expression of caspases. Results showed a decrease in cell viability, cell death induction by apoptosis, inhibition of colony formation, modulation of cell cycle and alterations in gene expression of caspases after caffeic acid treatment. These results suggest an antitumor effect of the compound on SK-Mel-28 cells. This study provides original information on mechanisms by which caffeic acid may play a key role in preventing tumor progression in human melanoma cells.


Asunto(s)
Ácidos Cafeicos/farmacología , Melanoma/tratamiento farmacológico , Adulto , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Ácidos Cafeicos/metabolismo , Caspasas/efectos de los fármacos , Caspasas/genética , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/genética , División Celular/efectos de los fármacos , Línea Celular Tumoral/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dacarbazina/farmacología , Femenino , Voluntarios Sanos , Humanos , Masculino , Melanoma/patología , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Melanoma Cutáneo Maligno
4.
Cell Mol Neurobiol ; 37(1): 53-63, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26879755

RESUMEN

Thyroid hormones have an influence on the functioning of the central nervous system. Furthermore, the cholinergic and purinergic systems also are extensively involved in brain function. In this context, quercetin is a polyphenol with antioxidant and neuroprotective properties. This study investigated the effects of (MMI)-induced hypothyroidism on the NTPDase, 5'-nucleotidase, adenosine deaminase (ADA), and acetylcholinesterase (AChE) activities in synaptosomes of rats and whether the quercetin can prevent it. MMI at a concentration of 20 mg/100 mL was administered for 90 days in the drinking water. The animals were divided into six groups: control/water (CT/W), control/quercetin 10 mg/kg, control/quercetin 25 mg/kg, methimazole/water (MMI/W), methimazole/quercetin 10 mg/kg (MMI/Q10), and methimazole/quercetin 25 mg/kg (MMI/Q25). On the 30th day, hormonal dosing was performed to confirm hypothyroidism, and the animals were subsequently treated with 10 or 25 mg/kg quercetin for 60 days. NTPDase activity was not altered in the MMI/W group. However, treatment with quercetin decreased ATP and ADP hydrolysis in the MMI/Q10 and MMI/Q25 groups. 5'-nucleotidase activity increased in the MMI/W group, but treatments with 10 or 25 mg/kg quercetin decreased 5'-nucleotidase activity. ADA activity decreased in the CT/25 and MMI/Q25 groups. Furthermore, AChE activity was reduced in all groups with hypothyroidism. In vitro tests also demonstrated that quercetin per se decreased NTPDase, 5'-nucleotidase, and AChE activities. This study demonstrated changes in the 5'-nucleotidase and AChE activities indicating that purinergic and cholinergic neurotransmission are altered in this condition. In addition, quercetin can alter these parameters and may be a promising natural compound with important neuroprotective actions in hypothyroidism.


Asunto(s)
5'-Nucleotidasa/metabolismo , Acetilcolinesterasa/metabolismo , Hipotiroidismo/enzimología , Nucleósido-Trifosfatasa/metabolismo , Quercetina/uso terapéutico , Sinaptosomas/enzimología , Animales , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Hipotiroidismo/tratamiento farmacológico , Masculino , Polifenoles/farmacología , Polifenoles/uso terapéutico , Quercetina/farmacología , Ratas , Ratas Wistar , Sinaptosomas/efectos de los fármacos
5.
Mol Cell Biochem ; 405(1-2): 11-21, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25893731

RESUMEN

This study was designed to assess the potential effect of vitamin D3 (VD3) in avoiding atherothrombosis by modulation of lipid metabolism and platelet activation in type 1 diabetic rats. Male wistar rats were divided into eight groups (n = 5-10): Control/Saline (Sal); Control/Metformin 500 mg/kg (Metf); Control/Vitamin D3 90 µg/kg (VD3); Control/Metformin 500 mg/kg + VD3 90 µg/kg (Metf + VD3); Diabetic/Saline (Sal); Diabetic/Metformin 500 mg/kg (Metf); Diabetic/Vitamin D3 90 µg/kg (VD3); Diabetic/Metformin 500 mg/kg + VD3 90 µg/kg (Metf + VD3). Treatments were administered during 30 days after diabetes induction with streptozotocin (STZ). After 31 days, the rats were euthanized and blood was collected and separated into serum and platelets, both used for lipid profile and ectonucleotidase activity assays, respectively. Ectonucleoside triphosphate phosphohydrolase (E-NTPDase), ectonucleotide pyrophosphatase/phosphodiesterase (E-NPP), and 5'-nucleotidase and adenosine deaminase (E-ADA) were significantly higher in the Diabetic than in Control group. Treatment with Metf and/or VD3 prevented the increase in NTPDase and E-NPP activities in diabetic rats. Only Metf + VD3 significantly prevented the increase in 5'-nucleotidase. VD3 alone, but not Metf, prevented the increase in ADA activity when compared to saline-treated diabetic rats. Treatment of rats with VD3, Metf, and Metf + VD3 was also effective in the prevention of lipid metabolism disorder in diabetic and was able to ameliorate lipid metabolism in non-diabetic rats. These results provide evidence for the potential of Metf and VD3 in the treatment of platelet dysfunction and lipid metabolism impairment in T1D, which may be important in the control and prevention of atherothrombosis in diabetes.


Asunto(s)
5'-Nucleotidasa/metabolismo , Colecalciferol/farmacología , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/metabolismo , Lípidos/sangre , Adenosina Desaminasa/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Metformina/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/metabolismo , Ratas , Ratas Wistar , Estreptozocina/farmacología
6.
Cell Biochem Funct ; 32(3): 287-93, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24301255

RESUMEN

We investigated the efficacy of rosmarinic acid (RA) in preventing lipid peroxidation and increased activity of acetylcholinesterase (AChE) in the brain of streptozotocin-induced diabetic rats. The animals were divided into six groups (n = 8): control, ethanol, RA 10 mg/kg, diabetic, diabetic/ethanol and diabetic/RA 10 mg/kg. After 21 days of treatment with RA, the cerebral structures (striatum, cortex and hippocampus) were removed for experimental assays. The results demonstrated that the treatment with RA (10 mg/kg) significantly reduced the level of lipid peroxidation in hippocampus (28%), cortex (38%) and striatum (47%) of diabetic rats when compared with the control. In addition, it was found that hyperglycaemia caused significant increased in the activity of AChE in hippocampus (58%), cortex (46%) and striatum (30%) in comparison with the control. On the other hand, the treatment with RA reversed this effect to the level of control after 3 weeks. In conclusion, the present findings showed that treatment with RA prevents the lipid peroxidation and consequently the increase in AChE activity in diabetic rats, demonstrating that this compound can modulate cholinergic neurotransmission and prevent damage oxidative in brain in the diabetic state. Thus, we can suggest that RA could be a promising compound in the complementary therapy in diabetes.


Asunto(s)
Acetilcolinesterasa/metabolismo , Antioxidantes/farmacología , Encéfalo/metabolismo , Cinamatos/farmacología , Depsidos/farmacología , Diabetes Mellitus Experimental/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Animales , Diabetes Mellitus Experimental/inducido químicamente , Masculino , Ratas , Ratas Wistar , Estreptozocina , Ácido Rosmarínico
7.
Mol Cell Biochem ; 374(1-2): 137-48, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23180243

RESUMEN

We aimed to examine the nucleoside triphosphate diphosphohydrolases (NTPDase) in lymphocytes; adenosine deaminase (ADA) and butyrylcholinesterase (BChE) in serum; and acetylcholinesterase (AChE), superoxide dismutase (SOD), and catalase (CAT) activity in whole blood; since these enzymes are involved in inflammation responses as well as in oxidative stress conditions. We also checked the levels of total thiols (T-SH), non-protein thiols (NPSH), and thiobarbituric acid reactive substances (TBARS) in serum of patients with lung cancer. We collected blood samples from patients (n = 31) previously treated for lung cancer with chemotherapy. Patients were classified as stage IIIb and IV according to the Union for International Cancer Control (UICC). The results showed a significant increase in the hydrolysis of ATP, ADP, and adenosine in patients when compared with the control group. The activity of AChE, SOD, and CAT as well as the T-SH and NPSH levels were higher in patients group and TBARS levels were lower in patients compared with the control group. These findings demonstrated that the enzymes activity involved in the control of inflammatory and immune processes as well as the oxidative stress parameters are altered in patients with lung cancer.


Asunto(s)
Biomarcadores de Tumor/sangre , Colinesterasas/sangre , Inflamación/enzimología , Neoplasias Pulmonares/metabolismo , Estrés Oxidativo , Acetilcolinesterasa/sangre , Adenosina Desaminasa/sangre , Anciano , Antineoplásicos/uso terapéutico , Butirilcolinesterasa/sangre , Catalasa/sangre , Colinesterasas/metabolismo , Cisplatino/uso terapéutico , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapéutico , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/enzimología , Linfocitos/enzimología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Nucleósido-Trifosfatasa/metabolismo , Fumar/sangre , Compuestos de Sulfhidrilo/sangre , Superóxido Dismutasa/sangre , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis , Gemcitabina
8.
Med Oncol ; 36(9): 78, 2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-31375946

RESUMEN

Cigarette smoking is directly associated with lung cancer. Non-small cell lung carcinoma (NSCLC) represents approximately 80% from all types of lung cancer. This latter is hard to diagnose and to treat due to the lack of symptoms in early stages of the disease. The aim of this study was to evaluate ADA activity and the expression of P2X7, A1, and A2A receptors and in lymphocytes. In addition, the profile of pro-inflammatory and anti-inflammatory cytokines serum levels of patients with lung cancer in advanced stage was evaluated. Patients (n = 13) previously treated for lung cancer at stage IV (UICC) with chemotherapy had their blood collected. Cancer patients showed a decrease in ADA activity and an increase in A1 receptor expression in lymphocytes when compared to the control group. Moreover, patients exhibited an increase in IL-6 and TNF-α, while IL-17 and INF-ϒ serum levels were lower in patients with lung cancer. The decreased ADA activity and the increase in A1 receptor expression may contribute to adenosine pro-tumor effects by increasing IL-6 and TNF-α and decreasing IL-17 and INF-γ serum levels. Our data show an indirect evidence that purinergic signaling may have a role in promoting a profile of cytokines levels that favors tumor progression.


Asunto(s)
Adenosina Desaminasa/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Linfocitos/enzimología , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Citocinas/sangre , Femenino , Humanos , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/metabolismo , Linfocitos/metabolismo , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Receptores Purinérgicos/metabolismo , Transducción de Señal
9.
Mol Nutr Food Res ; 62(16): e1800050, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29888863

RESUMEN

SCOPE: Beneficial effects produced by polyphenolic compounds are used in the treatment of various diseases, including diabetes. Thus it is relevant to investigate the protective effect of lingonberry extract (LB) on the activities of nucleoside triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase (5'-NT), and adenosine deaminase (ADA); the density of A1, A2A, and P2×7 receptors; production of reactive species (RS); and the levels of thiobarbituric acid reactive substances (TBARS) in the cerebral cortex of streptozotocin-induced diabetic rats. METHODS AND RESULTS: Animals were divided into five groups (n = 10): control/saline; control/LB 50 mg kg-1 ; diabetic/saline; diabetic/LB 25 mg kg-1 ; and diabetic/LB 50 mg kg-1 ; and treated for 30 days. Our results demonstrate that the treatment with LB increased NTPDase activity in the diabetic/LB 50 group compared to diabetic/saline group. Western blot analysis showed that LB restored the density of purinergic receptors to the approximate values of the control/saline group. An increase in the levels of RS and TBARS was observed in the diabetic/saline group compared with the control/saline group, and treatment with LB can prevent this increase. CONCLUSION: This study showed that LB could reverse the modifications found in the diabetic state, suggesting that lingonberry may be a coadjuvant in the treatment of diabetes.


Asunto(s)
Aminohidrolasas/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Receptores Purinérgicos/efectos de los fármacos , Vaccinium vitis-Idaea , 5'-Nucleotidasa/metabolismo , Animales , Glucemia/análisis , Corteza Cerebral/metabolismo , Diabetes Mellitus Experimental/metabolismo , Masculino , Ratas , Ratas Wistar , Estreptozocina
10.
J Physiol Biochem ; 71(4): 743-51, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26452500

RESUMEN

In the present study, we investigated the efficiency of rosmarinic acid (RA) in preventing the alteration of oxidative parameters in the liver and kidney of diabetic rats induced by streptozotocin (STZ). The animals were divided into six groups (n = 8): control, ethanol, RA 10 mg/kg, diabetic, diabetic/ethanol, and diabetic/RA 10 mg/kg. After 3 weeks of treatment, we found that TBARS levels in liver and kidney were significantly increased in the diabetic/saline group and the administration of RA prevented this increase in the liver and kidney (P < 0.05). Diabetes caused a significant decrease in the activity of superoxide dismutase (SOD) and catalase (CAT) in the diabetes/saline group (P < 0.05). However, the treatment with 10 mg/kg RA (antioxidant) prevented this alteration in SOD and CAT activity in the diabetic RA group (P < 0.05). In addition, RA reverses the decrease in ascorbic acid and non-protein-thiol (NPSH) levels in diabetic rats. The treatment with RA also prevented the decrease in the Delta-aminolevulinic acid dehydratase (ALA-D) activity in the liver and kidney of diabetic rats. Furthermore, RA did not have any effect on glycemic levels. These results indicate that RA effectively reduced the oxidative stress induced by STZ, suggesting that RA is a potential candidate for the prevention and treatment of pathological conditions in diabetic models.


Asunto(s)
Antioxidantes/farmacología , Cinamatos/farmacología , Depsidos/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Riñón/metabolismo , Hígado/metabolismo , Animales , Antioxidantes/uso terapéutico , Ácido Ascórbico/metabolismo , Biomarcadores/metabolismo , Glucemia , Cinamatos/uso terapéutico , Depsidos/uso terapéutico , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Evaluación Preclínica de Medicamentos , Riñón/efectos de los fármacos , Hígado/efectos de los fármacos , Masculino , Malondialdehído/metabolismo , Estrés Oxidativo , Ratas Wistar , Estreptozocina , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Ácido Rosmarínico
11.
Biomed Pharmacother ; 68(5): 603-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24855033

RESUMEN

This study investigated the δ-aminolevulinate dehydratase (δ-ALA-D) activity in whole blood as well as the parameters of oxidative stress, such as reactive species (RS) levels in serum, thiobarbituric acid reactive substances (TBARS) levels, the superoxide dismutase (SOD) and catalase (CAT) activities, as well as total thiols (T-SH) and non-protein thiols (NPSH) levels in platelets. Moreover, the content of vitamin C and E in plasma and serum, respectively, in lung cancer patients was also investigated. We collected blood samples from patients (n=28) previously treated for lung cancer with chemotherapy. Patients were classified as stage IIIb and IV according to the Union for International Cancer Control (UICC). Results showed a decrease of 37% in δ-ALA-D activity in patients with lung cancer when compared to the control group. RS and TBARS levels were 8% and 99% higher in the patient group, respectively. The activity of SOD and CAT as well as the vitamin C content were 41%, 35% and 127% lower in patients when compared with controls, respectively. However, T-SH and vitamin E levels were 27% and 44% higher in lung cancer patients, respectively. Results show that the overproduction of reactive species in patients with lung cancer may be interfering with the activity of δ-ALA-D. Likewise, the decrease in the activity of this enzyme may be contributing for the oxidative stress.


Asunto(s)
Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Estrés Oxidativo , Porfobilinógeno Sintasa/metabolismo , Anciano , Ácido Ascórbico/sangre , Plaquetas/enzimología , Estudios de Casos y Controles , Catalasa/sangre , Cisplatino/farmacología , Cisplatino/uso terapéutico , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Femenino , Humanos , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/tratamiento farmacológico , Masculino , Persona de Mediana Edad , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Sulfhidrilo/sangre , Superóxido Dismutasa/sangre , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Vitamina E/sangre , Gemcitabina
12.
J. physiol. biochem ; 71(4): 743-751, dic. 2015.
Artículo en Inglés | IBECS (España) | ID: ibc-145726

RESUMEN

In the present study, we investigated the efficiency of rosmarinic acid (RA) in preventing the alteration of oxidative parameters in the liver and kidney of diabetic rats induced by streptozotocin (STZ). The animals were divided into six groups (n = 8): control, ethanol, RA 10 mg/kg, diabetic, diabetic/ethanol, and diabetic/RA 10 mg/kg. After 3 weeks of treatment, we found that TBARS levels in liver and kidney were significantly increased in the diabetic/saline group and the administration of RA prevented this increase in the liver and kidney (P < 0.05). Diabetes caused a significant decrease in the activity of superoxide dismutase (SOD) and catalase (CAT) in the diabetes/saline group (P < 0.05). However, the treatment with 10 mg/kg RA (antioxidant) prevented this alteration in SOD and CAT activity in the diabetic RA group (P < 0.05). In addition, RA reverses the decrease in ascorbic acid and non-protein-thiol (NPSH) levels in diabetic rats. The treatment with RA also prevented the decrease in the Delta-aminolevulinic acid dehydratase (ALA-D) activity in the liver and kidney of diabetic rats. Furthermore, RA did not have any effect on glycemic levels. These results indicate that RA effectively reduced the oxidative stress induced by STZ, suggesting that RA is a potential candidate for the prevention and treatment of pathological conditions in diabetic models


Asunto(s)
Animales , Ratas , Diabetes Mellitus/tratamiento farmacológico , Estrés Oxidativo , Antioxidantes/farmacocinética , Extractos Vegetales/farmacocinética , Biomarcadores/análisis , Sustancias Protectoras/farmacocinética , Diabetes Mellitus/fisiopatología , Diabetes Mellitus Experimental/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA