Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
EMBO Rep ; 24(1): e54944, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36341538

RESUMEN

Melanoma tumors are highly metastatic partly due to the ability of melanoma cells to transition between invasive and proliferative states. However, the mechanisms underlying this plasticity are still not fully understood. To identify new epigenetic regulators of melanoma plasticity, we combined data mining, tumor models, proximity proteomics, and CUT&RUN sequencing. We focus on the druggable family of bromodomain epigenetic readers and identify TRIM28 as a new regulator of melanoma plasticity. We find that TRIM28 promotes the expression of pro-invasive genes and that TRIM28 controls the balance between invasiveness and growth of melanoma cells. We demonstrate that TRIM28 acts via the transcription factor JUNB that directly regulates the expression of pro-invasive and pro-growth genes. Mechanistically, TRIM28 controls the expression of JUNB by negatively regulating its transcriptional elongation by RNA polymerase II. In conclusion, our results demonstrate that a TRIM28-JUNB axis controls the balance between invasiveness and growth in melanoma tumors and suggest that the bromodomain protein TRIM28 could be targeted to reduce tumor spread.


Asunto(s)
Regulación de la Expresión Génica , Melanoma , Humanos , Línea Celular Tumoral , Proteína 28 que Contiene Motivos Tripartito/genética , Melanoma/genética
2.
Pharmacogenet Genomics ; 31(3): 60-67, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33075016

RESUMEN

OBJECTIVES: Chemotherapy-induced hematological toxicities are potentially life-threatening adverse drug reactions that vary between individuals. Recently, JMJD1C has been associated with gemcitabine/carboplatin-induced thrombocytopenia in non-small-cell lung cancer patients, making it a candidate marker for predicting the risk of toxicity. This study investigates if JMJD1C knockdown affects gemcitabine/carboplatin-sensitivity in cell lines. METHODS: Lentiviral transduction-mediated shRNA knockdown of JMJD1C in the cell lines K562 and MEG-01 were performed using shRNA#32 and shRNA#33. The knockdown was evaluated using qPCR. Cell proliferation, viability, and gemcitabine/carboplatin-sensitivity were subsequently determined using cell counts, trypan blue, and the MTT assay. RESULTS: ShRNA#33 resulted in JMJD1C downregulation by 56.24% in K562 and 68.10% in MEG-01. Despite incomplete knockdown, proliferation (reduction of cell numbers by 61-68%, day 7 post-transduction) and viability (reduction by 21-53%, day 7 post-transduction) were impaired in K562 and MEG-01 cells. Moreover, JMJD1C knockdown reduced the gemcitabine IC50-value for K562 cells (P < 0.01) and MEG-01 cells (P < 0.05) compared to scrambled shRNA control transduced cells. CONCLUSIONS: Our results suggest that JMJD1C is essential for proliferation, survival, and viability of K562 and MEG-01 cells. Further, JMJD1C also potentially affects the cells gemcitabine/carboplatin-sensitivity. Although further research is required, the findings show that JMJD1C could have an influential role for gemcitabine/carboplatin-sensitivity.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Histona Demetilasas con Dominio de Jumonji/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Oxidorreductasas N-Desmetilantes/genética , Carboplatino/efectos adversos , Carboplatino/farmacología , Supervivencia Celular/efectos de los fármacos , Desoxicitidina/efectos adversos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Técnicas de Silenciamiento del Gen , Humanos , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Células Mieloides/efectos de los fármacos , Células Mieloides/patología , Oxidorreductasas N-Desmetilantes/antagonistas & inhibidores , Gemcitabina
3.
Arch Toxicol ; 92(6): 2137-2140, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29748789

RESUMEN

In a recent study, we demonstrated that the variant allele of rs2480258 within intron VIII of CYP2E1 is associated with reduced levels of mRNA, protein, and enzyme activity. CYP2E1 is the most important enzyme in the metabolism of acrylamide (AA) by operating its oxidation into glycidamide (GA). AA occurs in food, is neurotoxic and classified as a probable human carcinogen. The goal of the present study was to further assess the role of rs2480258 by measuring the rate of AA > GA biotransformation in vivo. In blood samples from a cohort of 120 volunteers, the internal doses of AA and GA were assessed by AA and GA adducts to hemoglobin (Hb) measured by mass spectrometry. The rate of biotransformation was assessed by calculating the GA-Hb/AA-Hb ratio. To maximize the statistical power, 60 TT was compared to 60 CC-homozygotes and the results showed that TT homozygotes had a statistically significant reduced rate of biotransformation. Present results reinforced the notion that T-allele of rs2480258 is a marker of low functional activity of CYP2E1. Moreover, we studied the role of polymorphisms (SNPs) within glutathione-S-transferases (GSTs) enzymes and epoxide hydrolase (EPHX), verifying previous findings that SNPs within GSTs and EPHX influence the metabolism rate.


Asunto(s)
Acrilamida/metabolismo , Citocromo P-450 CYP2E1/genética , Compuestos Epoxi/metabolismo , Polimorfismo de Nucleótido Simple , Acrilamida/sangre , Adulto , Biotransformación , Citocromo P-450 CYP2E1/metabolismo , Compuestos Epoxi/sangre , Femenino , Frecuencia de los Genes , Genotipo , Voluntarios Sanos , Humanos , Masculino
4.
Occup Environ Med ; 74(6): 456-463, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28343162

RESUMEN

BACKGROUND: Soluble mesothelin-related peptide (SMRP) is a promising diagnostic biomarker for malignant pleural mesothelioma (MPM), but various confounders hinder its usefulness in surveillance programmes. We previously showed that a single nucleotide polymorphism (SNP) within the 3'untranslated region (3'UTR) of the mesothelin (MSLN) gene could affect the levels of SMRP. OBJECTIVES: To focus on SNPs located within MSLN promoter as possible critical genetic variables in determining SMRP levels. METHODS: The association between SMRP and SNPs was tested in 689 non-MPM subjects and 70 patients with MPM. Reporter plasmids carrying the four most common haplotypes were compared in a dual luciferase assay, and in silico analyses were performed to investigate the putative biological role of the SNPs. RESULTS: We found a strong association between serum SMRP and variant alleles of rs3764247, rs3764246 (in strong linkage disequilibrium with rs2235504) and rs2235503 in non-MPM subjects. Inclusion of the genotype information led to an increase in SMRP specificity from 79.9% to 85.5%. Although not statistically significant, the group with MPM showed the same trend of association. According to the in vitro luciferase study, rs3764247 itself had a functional role. In silico approaches showed that the binding sites for transcription factors such as Staf and ZNF143 could be affected by this SNP. The other SNPs were shown to interact with each other in a more complex way. CONCLUSIONS: These data support the suggestion that SMRP performance is affected by individual (ie, genetic) variables and that MSLN expression is influenced by SNPs located within the promoter regulatory region.


Asunto(s)
Biomarcadores de Tumor/genética , Proteínas Ligadas a GPI/sangre , Proteínas Ligadas a GPI/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Mesotelioma/diagnóstico , Mesotelioma/genética , Anciano , Alelos , Análisis de Varianza , Amianto/efectos adversos , Biomarcadores de Tumor/sangre , Femenino , Genotipo , Humanos , Italia , Luciferasas , Neoplasias Pulmonares/sangre , Masculino , Mesotelina , Mesotelioma/sangre , Mesotelioma Maligno , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Sensibilidad y Especificidad
5.
Arch Toxicol ; 90(12): 3099-3109, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26783003

RESUMEN

Differentiated thyroid carcinoma (DTC) results from complex interactions between genetic and environmental factors. Known etiological factors include exposure to ionizing radiations, previous thyroid diseases, and hormone factors. It has been speculated that dietary acrylamide (AA) formed in diverse foods following the Maillard's reaction could be a contributing factor for DTC in humans. Upon absorption, AA is biotransformed mainly by cytochrome P450 2E1 (CYP2E1) to glycidamide (GA). Considering that polymorphisms within CYP2E1 were found associated with endogenous levels of AA-Valine and GA-Valine hemoglobin adducts in humans, we raised the hypothesis that specific CYP2E1 genotypes could be associated with the risk of DTC. Analysis of four haplotype tagging SNPs (ht-SNPs) within the locus in a discovery case-control study (N = 350/350) indicated an association between rs2480258 and DTC risk. This ht-SNP resides within a linkage disequilibrium block spanning intron VIII and the 3'-untranslated region. Extended analysis in a large replication set (2429 controls and 767 cases) confirmed the association, with odds ratios for GA and AA genotypes of 1.24 (95 % confidence interval (CI) 1.03-1.48) and 1.56 (95 % CI, 1.06-2.30), respectively. Functionally, the minor allele was associated with low levels of CYP2E1 mRNA and protein expression as well as lower enzymatic activity in a series of 149 human liver samples. Our data support the hypothesis that inter-individual differences in CYP2E1 activity could modulate the risk of developing DTC suggesting that the exposure to specific xenobiotics, such as AA, could play a role in this process.


Asunto(s)
Carcinoma/genética , Citocromo P-450 CYP2E1/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Neoplasias de la Tiroides/genética , Regiones no Traducidas 3' , Adulto , Carcinoma/metabolismo , Carcinoma/patología , Estudios de Casos y Controles , Diferenciación Celular , Estudios de Cohortes , Citocromo P-450 CYP2E1/metabolismo , Femenino , Estudios de Asociación Genética , Hospitales Universitarios , Humanos , Intrones , Italia , Desequilibrio de Ligamiento , Masculino , Persona de Mediana Edad , ARN Mensajero/metabolismo , Lugares Marcados de Secuencia , Glándula Tiroides/patología , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología
6.
Forensic Sci Int Genet ; 53: 102510, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33799050

RESUMEN

Genetic disposition can cause variation in oxycodone pharmacokinetic characteristics and decrease or increase the expected clinical response. In forensic medicine, determination of cause of death or assessing time between drug intake and death can be facilitated by knowledge of parent and metabolite concentrations. In this study, the aim was to investigate if CYP2D6 genotyping can facilitate interpretation by investigating the frequency of the four CYP2D6 phenotypes, poor metabolizer, intermediate metabolizer, extensive metabolizer, and ultra-rapid metabolizer in postmortem cases, and to study if the CYP2D6 activity was associated with a certain cause of death, concentration, or metabolic ratio. Cases positive for oxycodone in femoral blood (n = 174) were genotyped by pyrosequencing for CYP2D6*3, *4, and *6 and concentrations of oxycodone, noroxycodone, oxymorphone, and noroxymorphone were determined by LC-MS/MS (LLOQ 0.005 µg/g). Digital droplet PCR was used to determine the copy number variation for CYP2D6*5. Cases were categorized by cause of death. It was found that poor and intermediate CYP2D6 metabolizers had significantly higher oxycodone and noroxycodone concentrations compared to extensive and ultra-rapid metabolizers. CYP2D6 phenotype were equally distributed between cause of death groups, showing that no phenotype was overrepresented in any of the cause of death groups. We also found that the concentration ratio between oxymorphone and oxycodone depended on the CYP2D6 activity when death was unrelated to intoxication. In general, a low metabolite to parent ratio indicate an acute intake. By using receiver operating characteristic (ROC) analysis, we conclude that an oxymorphone/oxycodone ratio lower than 0.075 has a high sensitivity for separating intoxications with oxycodone from other intoxications and non-intoxications. However, the phenotype needs to be known to reach a high specificity. Therefore, the ratio should not be used as a biomarker on its own to distinguish between different causes of death but needs to be complemented by genotyping.


Asunto(s)
Analgésicos Opioides/sangre , Citocromo P-450 CYP2D6/genética , Oxicodona/sangre , Pruebas de Farmacogenómica , Adolescente , Adulto , Anciano , Analgésicos Opioides/farmacocinética , Variaciones en el Número de Copia de ADN , Femenino , Genética Forense , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Morfinanos/sangre , Oxicodona/farmacocinética , Fenotipo , Polimorfismo de Nucleótido Simple , Adulto Joven
7.
Genes Cancer ; 8(1-2): 438-452, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28435517

RESUMEN

Malignant pleural mesothelioma (MPM) is a cancer of the pleural cavity resistant to chemotherapy. The identification of novel therapeutic targets is needed to improve its poor prognosis. Following a review of literature and a screening of specimens we found that platelet-derived growth factor receptor beta (PDGFRB) is over-expressed, but not somatically mutated, in MPM tissues. We aimed to ascertain whether PDGFRB is a MPM-cancer driver gene. The approaches employed included the use of gene silencing and the administration of small molecules, such as crenolanib and imatinib (PDGFR inhibitors) on MPM cell lines (IstMes2, Mero-14, Mero-25). Met5A cells were used as non-malignant mesothelial cell line. PDGFRB-silencing caused a decrease in the proliferation rate, and a reduced colony formation capacity, as well as an increase of the share of cells in sub-G1 and in G2 phase, and increased apoptotic rate of MPM cell lines. Loss of migration ability was also observed. Similar, or even further enhanced, results were obtained with crenolanib. Imatinib showed the least effective activity on the phenotype. In conclusion, our study highlights PDGFRB as target with a clear role in MPM tumorigenesis and provided a rationale to explore further the efficacy of crenolanib in MPM patients, with promising results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA