Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 554, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877405

RESUMEN

BACKGROUND: Epidermal patterning factor / -like (EPF/EPFL) gene family encodes a class of cysteine-rich secretory peptides, which are widelyfound in terrestrial plants.Multiple studies has indicated that EPF/EPFLs might play significant roles in coordinating plant development and growth, especially as the morphogenesis processes of stoma, awn, stamen, and fruit skin. However, few research on EPF/EPFL gene family was reported in Gossypium. RESULTS: We separately identified 20 G. raimondii, 24 G. arboreum, 44 G. hirsutum, and 44 G. barbadense EPF/EPFL genes in the 4 representative cotton species, which were divided into four clades together with 11 Arabidopsis thaliana, 13 Oryza sativa, and 17 Selaginella moellendorffii ones based on their evolutionary relationships. The similar gene structure and common motifs indicated the high conservation among the EPF/EPFL members, while the uneven distribution in chromosomes implied the variability during the long-term evolutionary process. Hundreds of collinearity relationships were identified from the pairwise comparisons of intraspecifc and interspecific genomes, which illustrated gene duplication might contribute to the expansion of cotton EPF/EPFL gene family. A total of 15 kinds of cis-regulatory elements were predicted in the promoter regions, and divided into three major categories relevant to the biological processes of development and growth, plant hormone response, and abiotic stress response. Having performing the expression pattern analyses with the basic of the published RNA-seq data, we found most of GhEPF/EPFL and GbEPF/EPFL genes presented the relatively low expression levels among the 9 tissues or organs, while showed more dramatically different responses to high/low temperature and salt or drought stresses. Combined with transcriptome data of developing ovules and fibers and quantitative Real-time PCR results (qRT-PCR) of 15 highly expressed GhEPF/EPFL genes, it could be deduced that the cotton EPF/EPFL genes were closely related with fiber development. Additionally, the networks of protein-protein interacting among EPF/EPFLs concentrated on the cores of GhEPF1 and GhEPF7, and thosefunctional enrichment analyses indicated that most of EPF/EPFLs participate in the GO (Gene Ontology) terms of stomatal development and plant epidermis development, and the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways of DNA or base excision repair. CONCLUSION: Totally, 132 EPF/EPFL genes were identified for the first time in cotton, whose bioinformatic analyses of cis-regulatory elements and expression patterns combined with qRT-PCR experiments to prove the potential functions in the biological processes of plant growth and responding to abiotic stresses, specifically in the fiber development. These results not only provide comprehensive and valuable information for cotton EPF/EPFL gene family, but also lay solid foundation for screening candidate EPF/EPFL genes in further cotton breeding.


Asunto(s)
Gossypium , Familia de Multigenes , Proteínas de Plantas , Gossypium/genética , Gossypium/metabolismo , Gossypium/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Genes de Plantas , Estudio de Asociación del Genoma Completo , Perfilación de la Expresión Génica , Mapas de Interacción de Proteínas
2.
BMC Microbiol ; 24(1): 224, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926818

RESUMEN

Multi-drug-resistant Staphylococcus aureus infections necessitate novel antibiotic development. D-3263, a transient receptor potential melastatin member 8 (TRPM8) agonist, has potential antineoplastic properties. Here, we reported the antibacterial and antibiofilm activities of D-3263. Minimum inhibitory concentrations (MICs) against S. aureus, Enterococcus faecalis and E. faecium were ≤ 50 µM. D-3263 exhibited bactericidal effects against clinical methicillin-resistant S. aureus (MRSA) and E. faecalis strains at 4× MIC. Subinhibitory D-3263 concentrations effectively inhibited S. aureus and E. faecalis biofilms, with higher concentrations also clearing mature biofilms. Proteomic analysis revealed differential expression of 29 proteins under 1/2 × MIC D-3263, influencing amino acid biosynthesis and carbohydrate metabolism. Additionally, D-3263 enhanced membrane permeability of S. aureus and E. faecalis. Bacterial membrane phospholipids phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin (CL) dose-dependently increased D-3263 MICs. Overall, our data suggested that D-3263 exhibited potent antibacterial and antibiofilm activities against S. aureus by targeting the cell membrane.


Asunto(s)
Antibacterianos , Biopelículas , Enterococcus faecalis , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Antibacterianos/farmacología , Staphylococcus aureus/efectos de los fármacos , Enterococcus faecalis/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteómica , Humanos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos
3.
PeerJ ; 12: e17625, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948221

RESUMEN

Plasmodesmata are transmembrane channels embedded within the cell wall that can facilitate the intercellular communication in plants. Plasmodesmata callose-binding (PDCB) protein that associates with the plasmodesmata contributes to cell wall extension. Given that the elongation of cotton fiber cells correlates with the dynamics of the cell wall, this protein can be related to the cotton fiber elongation. This study sought to identify PDCB family members within the Gossypium. hirsutum genome and to elucidate their expression profiles. A total of 45 distinct family members were observed through the identification and screening processes. The analysis of their physicochemical properties revealed the similarity in the amino acid composition and molecular weight across most members. The phylogenetic analysis facilitated the construction of an evolutionary tree, categorizing these members into five groups mainly distributed on 20 chromosomes. The fine mapping results facilitated a tissue-specific examination of group V, revealing that the expression level of GhPDCB9 peaked five days after flowering. The VIGS experiments resulted in a marked decrease in the gene expression level and a significant reduction in the mature fiber length, averaging a shortening of 1.43-4.77 mm. The results indicated that GhPDCB9 played a pivotal role in the cotton fiber development and served as a candidate for enhancing cotton yield.


Asunto(s)
Fibra de Algodón , Gossypium , Filogenia , Proteínas de Plantas , Plasmodesmos , Gossypium/genética , Gossypium/metabolismo , Plasmodesmos/metabolismo , Fibra de Algodón/análisis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucanos/metabolismo , Familia de Multigenes , Pared Celular/metabolismo , Pared Celular/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo
4.
Gene ; 921: 148499, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38718970

RESUMEN

Cell wall invertase (CIN) is a vital member of plant invertase (INV) and plays a key role in the breakdown of sucrose. This enzyme facilitates the hydrolysis of sucrose into glucose and fructose, which is crucial for various aspects of plant growth and development. However, the function of CIN genes in foxtail millet (Setaria italica) is less studied. In this research, we used the blast-p of NCBI and TBtools for bidirectional comparison, and a total of 13 CIN genes (named SiCINs) were identified from foxtail millet by using Arabidopsis and rice CIN sequences as reference sequences. The phylogenetic tree analysis revealed that the CIN genes can be categorized into three subfamilies: group 1, group 2, and group 3. Furthermore, upon conducting chromosomal localization analysis, it was observed that the 13 SiCINs were distributed unevenly across five chromosomes. Cis-acting elements of SiCIN genes can be classified into three categories: plant growth and development, stress response, and hormone response. The largest number of cis-acting elements were those related to light response (G-box) and the cis-acting elements related to seed-specific regulation (RY-element). qRT-PCR analysis further confirmed that the expression of SiCIN7 and SiCIN8 in the grain was higher than that in any other tissues. The overexpression of SiCIN7 in Arabidopsis improved the grain size and thousand-grain weight, suggesting that SiCIN7 could positively regulate grain development. Our findings will help to further understand the grain-filling mechanism of SiCIN and elucidate the biological mechanism underlying the grain development of SiCIN.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , Setaria (Planta) , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Setaria (Planta)/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Familia de Multigenes , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/metabolismo , Cromosomas de las Plantas/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Genoma de Planta , Mapeo Cromosómico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA