Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(11): e2306972, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38143291

RESUMEN

Vanadium-based compounds are identified as promising cathode materials for aqueous zinc ion batteries due to their high specific capacity. However, the low intrinsic conductivity and sluggish Zn2+ diffusion kinetics seriously impede their further practical application. Here, oxygen vacancies on NH4 V4 O10 is reported as a high-performing cathode material for aqueous zinc ion batteries via a facile hydrothermal strategy. The introduction of oxygen vacancy accelerates the ion and charge transfer kinetics, reduces the diffusion barrier of zinc ions, and establishes a stable crystal structure during zinc ion (de-intercalation). As a result, the oxygen vacancy enriched NH4 V4 O10 exhibits a high specific capacity of ≈499 mA h g-1 at 0.2 A g-1 , an excellent rate capability of 296 mA h g-1 at 10 A g-1 and the specific capacity cycling stability with 95.1% retention at 5 A g-1 for 4000 cycles, superior to the NVO sample (186.4 mAh g-1 at 5 A g-1 , 66% capacity retention).

2.
Opt Lett ; 49(11): 3114-3117, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824341

RESUMEN

On-chip integrated metasurface driven by in-plane guided waves is of great interests in various light-field manipulation applications such as colorful augmented reality and holographic display. However, it remains a challenge to design colorful multichannel holography by a single on-chip metasurface. Here we present metasurfaces integrated on top of a guided-wave photonic slab that achieves multi-channel colorful holographic light display. An end-to-end scheme is used to inverse design the metasurface for projecting off-chip preset multiple patterns. Particular examples are presented for customized patterns that were encoded into the metasurface with a single-cell meta-atom, working simultaneously at RGB color channels and for several different diffractive distances, with polarization dependence. Holographic images are generated at 18 independent channels with such a single-cell metasurface. The proposed design scheme is easy to implement, and the resulting device is viable for fabrication, promising plenty of applications in nanophotonics.

3.
Langmuir ; 40(23): 12191-12199, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38814134

RESUMEN

It is of great significance to construct a Z-scheme heterojunction for improving solar light harvesting and achieving efficient separation of photogenerated carriers and then enhancement of the photocatalytic performance of semiconductor photocatalysts. Herein, the direct Z-scheme PI/Ag2WO4 heterojunction was designed and prepared according to the band edge potentials of the semiconductor. Due to the fact that the Z-scheme structure not only endowed the PI/Ag2WO4 composites with efficient separation of photogenerated electron-hole pairs but also reserved the redox ability of the valence band and conduction band of monophase catalysts, the 50% PI/Ag2WO4 heterojunction exhibited excellent photocatalytic activity, which were 2.9 and 1.5 times those of the PI and Ag2WO4 photocatalysts, respectively. The photocatalytic reaction mechanism of PI/Ag2WO4 composites was confirmed by the results of TEM, UV-vis, XPS, and EPR experiments. This work provides a feasible strategy to design high-performance photocatalysts in the field of practice purification of wastewater.

4.
Environ Res ; 258: 119416, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38885827

RESUMEN

To address the urgent need for efficient removal of lead-containing wastewater and reduce the risk of toxicity associated with heavy-metal wastewater contamination, materials with high removal rates and easy separation must be developed. Herein, a novel organic-inorganic hybrid material based on phosphorylated magnetic chitosan (MSCP) was synthesized and applied for the selective removal of lead (II) from wastewater. From the characterization and the experimental results can be obtained that the magnetic saturation strength of MSCP reaches 14.65 emu/g, which can be separated quickly and regenerated readily, and maintains high adsorption performance even after 5 cycles, indicating that the adsorbent possesses good magnetic separation performance and durability. Also, MSCP showed high selective adsorption performance for lead in the multiple metal ions coexistence solutions at pH 6.0 and room temperature, with an adsorption coefficient SPb-MSCP of 78.85%, which was much higher than that of MSC (the SPb-MSC was 11.59%). Additionally, in the single lead system, the sorption characteristics of Pb(II) on MSCP and MCP had obvious pH-responsiveness, and their adsorption capacity increased with the increase of solution pH, reaching the maximal values of 80.19 and 72.68 mg/g, respectively. It is noteworthy that the acid resistance of MSCP with an inert layer coated on the core is significantly improved, with almost no iron leaching from MSCP over the entire acidity range, while MCP has 7.63 mg/g of iron leaching at pH 1.0. Significantly, MSCP exhibited a maximum adsorption capacity of 102.04 mg/g, which matches the Langmuir model at pH 6.0 and 298.15 K, and points to the pseudo-second-order kinetics of the chemisorption process of Pb(II) on MSCP. These findings highlight the great potential of MSCP for Pb(II) removal from aqueous solution, making it a promising solution for Pb(II) contamination in wastewater.


Asunto(s)
Quitosano , Plomo , Fosfatos , Aguas Residuales , Contaminantes Químicos del Agua , Plomo/química , Plomo/aislamiento & purificación , Quitosano/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Adsorción , Fosfatos/química , Concentración de Iones de Hidrógeno , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos
5.
JAMA ; 331(10): 840-849, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38329440

RESUMEN

Importance: It is uncertain whether intravenous methylprednisolone improves outcomes for patients with acute ischemic stroke due to large-vessel occlusion (LVO) undergoing endovascular thrombectomy. Objective: To assess the efficacy and adverse events of adjunctive intravenous low-dose methylprednisolone to endovascular thrombectomy for acute ischemic stroke secondary to LVO. Design, Setting, and Participants: This investigator-initiated, randomized, double-blind, placebo-controlled trial was implemented at 82 hospitals in China, enrolling 1680 patients with stroke and proximal intracranial LVO presenting within 24 hours of time last known to be well. Recruitment took place between February 9, 2022, and June 30, 2023, with a final follow-up on September 30, 2023. Interventions: Eligible patients were randomly assigned to intravenous methylprednisolone (n = 839) at 2 mg/kg/d or placebo (n = 841) for 3 days adjunctive to endovascular thrombectomy. Main Outcomes and Measures: The primary efficacy outcome was disability level at 90 days as measured by the overall distribution of the modified Rankin Scale scores (range, 0 [no symptoms] to 6 [death]). The primary safety outcomes included mortality at 90 days and the incidence of symptomatic intracranial hemorrhage within 48 hours. Results: Among 1680 patients randomized (median age, 69 years; 727 female [43.3%]), 1673 (99.6%) completed the trial. The median 90-day modified Rankin Scale score was 3 (IQR, 1-5) in the methylprednisolone group vs 3 (IQR, 1-6) in the placebo group (adjusted generalized odds ratio for a lower level of disability, 1.10 [95% CI, 0.96-1.25]; P = .17). In the methylprednisolone group, there was a lower mortality rate (23.2% vs 28.5%; adjusted risk ratio, 0.84 [95% CI, 0.71-0.98]; P = .03) and a lower rate of symptomatic intracranial hemorrhage (8.6% vs 11.7%; adjusted risk ratio, 0.74 [95% CI, 0.55-0.99]; P = .04) compared with placebo. Conclusions and Relevance: Among patients with acute ischemic stroke due to LVO undergoing endovascular thrombectomy, adjunctive methylprednisolone added to endovascular thrombectomy did not significantly improve the degree of overall disability. Trial Registration: ChiCTR.org.cn Identifier: ChiCTR2100051729.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Femenino , Humanos , Anciano , Método Doble Ciego , Trombectomía/efectos adversos , Hemorragias Intracraneales , Metilprednisolona/efectos adversos
6.
JMIR Mhealth Uhealth ; 12: e52169, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38409754

RESUMEN

Background: As the Chinese society ages and the concern for health and quality of life grows, the demand for care services in China is increasing. The widespread use of internet technology has greatly improved the convenience and efficiency of web-based services. As a result, the Chinese government has been implementing "Internet+Nursing Services" since 2019, with mobile apps being the primary tools for users to access these services. The quality of these apps is closely related to user experience and the smooth use of services. Objective: This study aims to evaluate the functionality, services, and quality of "Internet+Nursing Service" apps; identify weaknesses; and provide suggestions for improving service programs and the research, development, improvement, and maintenance of similar apps. Methods: In December 2022, two researchers searched for "Internet+Nursing Service" apps by applying the search criteria on the Kuchuan mobile app monitoring platform. After identifying the apps to be included based on ranking criteria, they collected information such as the app developer, app size, version number, number of downloads, user ratings, and number and names of services. Afterward, 5 trained researchers independently evaluated the quality of the apps by using the Chinese version of the user version of the Mobile App Rating Scale (uMARS-C). The total uMARS-C score was based on the average of the five evaluators' ratings. Results: A total of 17 "Internet+Nursing Service" apps were included. Among these, 12 (71%) had been downloaded more than 10,000 times, 11 (65%) had user ratings of 4 or higher, the median app size was 62.67 (range 22.71-103; IQR 37.51-73.47) MB, 16 (94%) apps provided surgical wound dressing change services, 4 (24%) covered first-tier cities, and only 1 (6%) covered fourth-tier cities. The median total uMARS-C score was 3.88 (range 1.92-4.92; IQR 3.71-4.05), which did not correlate with app store user ratings (r=0.003; P=.99). The quality of most apps (11/17, 65%) was average. Most apps (12/17, 71%) were rated as "good" or above (≥4 points) in terms of information quality, layout, graphics, performance, and ease of use; however, the vast majority of apps were rated as "fair" or even "poor" (<4 points) in terms of credibility (14/17, 82%) and demand (16/17, 94%). Conclusions: "Internet+Nursing Service" apps need to broaden their service coverage, increase service variety, and further optimize their service structure. The overall quality of these apps is generally poor. App developers should collaborate with medical professionals and communicate with target users before launching their products to ensure accurate content, complete functionality, and good operation that meets user needs.


Asunto(s)
Aplicaciones Móviles , Humanos , Calidad de Vida , China
7.
Chem Sci ; 15(26): 10046-10055, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38966385

RESUMEN

Materials exhibiting highly efficient, ultralong and multicolor-tunable room-temperature phosphorescence (RTP) are of practical importance for emerging applications. However, these are still very scarce and remain a formidable challenge. Herein, using precise structure design, several novel organic-inorganic metal-halide hybrids with efficient and ultralong RTP have been developed based on an identical organic cation (A). The original organic salt (ACl) exhibits red RTP properties with low phosphorescence efficiency. However, after embedding metals into the organic salt, the changed crystal structure endows the resultant metal-halide hybrids with excellent RTP properties. In particular, A2ZnCl4·H2O exhibits the highest RTP efficiency of up to 56.56% with a long lifetime of up to 159 ms. It is found that multiple inter/intramolecular interactions and the strong heavy-atom effect of the rigid metal-halide hybrids can suppress molecular motion and promote the ISC process, resulting in highly stable and localized triplet excitons followed by highly efficient RTP. More crucially, multicolor-tunable fluorescence and RTP achieved by tuning the metal and halogen endow these materials with wide application prospects in the fields of multilevel information encryption and dynamic optical data storage. The findings promote the development of phosphorescent metal-halide hybrids for potential high-tech applications.

8.
ACS Biomater Sci Eng ; 10(6): 3923-3934, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38766805

RESUMEN

The repair of critical-sized bone defects continues to pose a challenge in clinics. Strontium (Sr), recognized for its function in bone metabolism regulation, has shown potential in bone repair. However, the underlying mechanism through which Sr2+ guided favorable osteogenesis by modulating macrophages remains unclear, limiting their application in the design of bone biomaterials. Herein, Sr-incorporated bioactive glass (SrBG) was synthesized for further investigation. The release of Sr ions enhanced the immunomodulatory properties and osteogenic potential by modulating the polarization of macrophages toward the M2 phenotype. In vivo, a 3D-printed SrBG scaffold was fabricated and showed consistently improved bone regeneration by creating a prohealing immunological microenvironment. RNA sequencing was performed to explore the underlying mechanisms. It was found that Sr ions might enhance the mitochondrial function of macrophage by activating PI3K/AKT/mTOR signaling, thereby favoring osteogenesis. Our findings demonstrate the relationship between the immunomodulatory role of Sr ions and the mitochondrial function of macrophages. By focusing on the mitochondrial function of macrophages, Sr2+-mediated immunomodulation sheds light on the future design of biomaterials for tissue regenerative engineering.


Asunto(s)
Vidrio , Macrófagos , Mitocondrias , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Estroncio , Serina-Treonina Quinasas TOR , Serina-Treonina Quinasas TOR/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/inmunología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Estroncio/farmacología , Estroncio/química , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Células RAW 264.7 , Vidrio/química , Osteogénesis/efectos de los fármacos , Regeneración Ósea/efectos de los fármacos , Andamios del Tejido/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Microambiente Celular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA