Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 556(7699): 74-79, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29590094

RESUMEN

Majorana zero-modes-a type of localized quasiparticle-hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool for identifying the presence of Majorana zero-modes, for instance as a zero-bias peak in differential conductance. The height of the Majorana zero-bias peak is predicted to be quantized at the universal conductance value of 2e2/h at zero temperature (where e is the charge of an electron and h is the Planck constant), as a direct consequence of the famous Majorana symmetry in which a particle is its own antiparticle. The Majorana symmetry protects the quantization against disorder, interactions and variations in the tunnel coupling. Previous experiments, however, have mostly shown zero-bias peaks much smaller than 2e2/h, with a recent observation of a peak height close to 2e2/h. Here we report a quantized conductance plateau at 2e2/h in the zero-bias conductance measured in indium antimonide semiconductor nanowires covered with an aluminium superconducting shell. The height of our zero-bias peak remains constant despite changing parameters such as the magnetic field and tunnel coupling, indicating that it is a quantized conductance plateau. We distinguish this quantized Majorana peak from possible non-Majorana origins by investigating its robustness to electric and magnetic fields as well as its temperature dependence. The observation of a quantized conductance plateau strongly supports the existence of Majorana zero-modes in the system, consequently paving the way for future braiding experiments that could lead to topological quantum computing.

2.
Nanotechnology ; 33(37)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35671745

RESUMEN

Electron emission from quasi-freestanding bilayer epitaxial graphene (QFEG) on a silicon carbide substrate is reported, demonstrating emission currents as high as 8.5µA, at ∼200 °C, under 0.3 Torr vacuum. Given the significantly low turn-on temperature of these QFEG devices, ∼150°C, the electron emission is explained by phonon-assisted electron emission, where the acoustic and optical phonons of QFEG causes carrier acceleration and emission. Devices of differing dimensions and shapes are fabricated via a simple and scalable fabrication procedure and tested. Variations in device morphology increase the density of dangling bonds, which can act as electron emission sites. Devices exhibit emission enhancement at increased temperatures, attributed to greater phonon densities. Devices exhibit emission under various test conditions, and a superior design and operating methodology are identified.

4.
Sensors (Basel) ; 22(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35891050

RESUMEN

The electrochemical detection of heavy metal ions is reported using an inexpensive portable in-house built potentiostat and epitaxial graphene. Monolayer, hydrogen-intercalated quasi-freestanding bilayer, and multilayer epitaxial graphene were each tested as working electrodes before and after modification with an oxygen plasma etch to introduce oxygen chemical groups to the surface. The graphene samples were characterized using X-ray photoelectron spectroscopy, atomic force microscopy, Raman spectroscopy, and van der Pauw Hall measurements. Dose-response curves in seawater were evaluated with added trace levels of four heavy metal salts (CdCl2, CuSO4, HgCl2, and PbCl2), along with detection algorithms based on machine learning and library development for each form of graphene and its oxygen plasma modification. Oxygen plasma-modified, hydrogen-intercalated quasi-freestanding bilayer epitaxial graphene was found to perform best for correctly identifying heavy metals in seawater.


Asunto(s)
Grafito , Metales Pesados , Grafito/química , Hidrógeno , Oxígeno , Sales (Química) , Agua de Mar
6.
Adv Mater ; 36(7): e2309777, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37992676

RESUMEN

The layered insulator hexagonal boron nitride (hBN) is a critical substrate that brings out the exceptional intrinsic properties of two-dimensional (2D) materials such as graphene and transition metal dichalcogenides (TMDs). In this work, the authors demonstrate how hBN slabs tuned to the correct thickness act as optical waveguides, enabling direct optical coupling of light emission from encapsulated layers into waveguide modes. Molybdenum selenide (MoSe2 ) and tungsten selenide (WSe2 ) are integrated within hBN-based waveguides and demonstrate direct coupling of photoluminescence emitted by in-plane and out-of-plane transition dipoles (bright and dark excitons) to slab waveguide modes. Fourier plane imaging of waveguided photoluminescence from MoSe2 demonstrates that dry etched hBN edges are an effective out-coupler of waveguided light without the need for oil-immersion optics. Gated photoluminescence of WSe2 demonstrates the ability of hBN waveguides to collect light emitted by out-of-plane dark excitons.Numerical simulations explore the parameters of dipole placement and slab thickness, elucidating the critical design parameters and serving as a guide for novel devices implementing hBN slab waveguides. The results provide a direct route for waveguide-based interrogation of layered materials, as well as a way to integrate layered materials into future photonic devices at arbitrary positions whilst maintaining their intrinsic properties.

7.
Biosens Bioelectron ; 197: 113803, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34814034

RESUMEN

We report the rapid detection of SARS-CoV-2 in infected patients (mid-turbinate swabs and exhaled breath aerosol samples) in concentrations as low as 60 copies/mL of the virus in seconds by electrical transduction of the SARS-CoV-2 S1 spike protein antigen via SARS-CoV-2 S1 spike protein antibodies immobilized on bilayer quasi-freestanding epitaxial graphene without gate or signal amplification. The sensor demonstrates the spike protein antigen detection in a concentration as low as 1 ag/mL. The heterostructure of the SARS-CoV-2 antibody/graphene-based sensor is developed through a simple and low-cost fabrication technique. Furthermore, sensors integrated into a portable testing unit distinguished B.1.1.7 variant positive samples from infected patients (mid-turbinate swabs and saliva samples, 4000-8000 copies/mL) with a response time of as fast as 0.6 s. The sensor is reusable, allowing for reimmobilization of the crosslinker and antibodies on the biosensor after desorption of biomarkers by NaCl solution or heat treatment above 40 °C.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Grafito , Humanos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA