Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 610(7932): 513-518, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36224387

RESUMEN

As the United Nations develops a post-2020 global biodiversity framework for the Convention on Biological Diversity, attention is focusing on how new goals and targets for ecosystem conservation might serve its vision of 'living in harmony with nature'1,2. Advancing dual imperatives to conserve biodiversity and sustain ecosystem services requires reliable and resilient generalizations and predictions about ecosystem responses to environmental change and management3. Ecosystems vary in their biota4, service provision5 and relative exposure to risks6, yet there is no globally consistent classification of ecosystems that reflects functional responses to change and management. This hampers progress on developing conservation targets and sustainability goals. Here we present the International Union for Conservation of Nature (IUCN) Global Ecosystem Typology, a conceptually robust, scalable, spatially explicit approach for generalizations and predictions about functions, biota, risks and management remedies across the entire biosphere. The outcome of a major cross-disciplinary collaboration, this novel framework places all of Earth's ecosystems into a unifying theoretical context to guide the transformation of ecosystem policy and management from global to local scales. This new information infrastructure will support knowledge transfer for ecosystem-specific management and restoration, globally standardized ecosystem risk assessments, natural capital accounting and progress on the post-2020 global biodiversity framework.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Política Ambiental , Biodiversidad , Biota , Conservación de los Recursos Naturales/legislación & jurisprudencia , Conservación de los Recursos Naturales/métodos , Política Ambiental/legislación & jurisprudencia , Política Ambiental/tendencias , Objetivos , Naciones Unidas , Animales
2.
New Phytol ; 238(3): 1305-1317, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36444527

RESUMEN

The architecture of root systems is an important driver of plant fitness, competition and ecosystem processes. However, the methodological difficulty of mapping roots hampers the study of these processes. Existing approaches to match individual plants to belowground samples are low throughput and species specific. Here, we developed a scalable sequencing-based method to map the root systems of individual trees across multiple species. We successfully applied it to a tropical dry forest community in the Brazilian Caatinga containing 14 species. We sequenced all 42 individual shrubs and trees in a 14 × 14 m plot using double-digest restriction site-associated sequencing (ddRADseq). We identified species-specific markers and individual-specific haplotypes from the data. We matched these markers to the ddRADseq data from 100 mixed root samples from across the centre (10 × 10 m) of the plot at four different depths using a newly developed R package. We identified individual root samples for all species and all but one individual. There was a strong significant correlation between belowground and aboveground size measurements, and we also detected significant species-level root-depth preference for two species. The method is more scalable and less labour intensive than the current techniques and is broadly applicable to ecology, forestry and agricultural biology.


Asunto(s)
Ecosistema , Árboles , Árboles/genética , Genotipo , Bosques , Agricultura Forestal , Plantas , Raíces de Plantas
3.
New Phytol ; 237(2): 631-642, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36263711

RESUMEN

Plants are widely recognized as chemical factories, with each species producing dozens to hundreds of unique secondary metabolites. These compounds shape the interactions between plants and their natural enemies. We explore the evolutionary patterns and processes by which plants generate chemical diversity, from evolving novel compounds to unique chemical profiles. We characterized the chemical profile of one-third of the species of tropical rainforest trees in the genus Inga (c. 100, Fabaceae) using ultraperformance liquid chromatography-mass spectrometry-based metabolomics and applied phylogenetic comparative methods to understand the mode of chemical evolution. We show: each Inga species contain structurally unrelated compounds and high levels of phytochemical diversity; closely related species have divergent chemical profiles, with individual compounds, compound classes, and chemical profiles showing little-to-no phylogenetic signal; at the evolutionary time scale, a species' chemical profile shows a signature of divergent adaptation. At the ecological time scale, sympatric species were the most divergent, implying it is also advantageous to maintain a unique chemical profile from community members; finally, we integrate these patterns with a model for how chemical diversity evolves. Taken together, these results show that phytochemical diversity and divergence are fundamental to the ecology and evolution of plants.


Asunto(s)
Fabaceae , Metabolómica , Metabolismo Secundario , Filogenia , Bosque Lluvioso
4.
Ann Bot ; 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37642263

RESUMEN

BACKGROUND AND AIMS: Geoxyles, a distinctive feature of Afrotropical savannas and grasslands, survive recurrent disturbances by resprouting subshrub branches from large belowground woody structures. Underground trees are a type of geoxyle that independently evolved within woody genera of at least 40 plant families in Africa. The environmental limits and determinants of underground tree biogeography are poorly understood with the relative influence of frost and fire debated in particular. We aim to quantify variability in the niche of underground tree species relative to their taller, woody tree/shrub congeners. METHODS: Using occurrence records of four Afrotropical genera, Parinari (Chrysobalanaceae), Ozoroa (Anacardiaceae), Syzygium (Myrtaceae) and Lannea (Anacardiaceae), and environmental data of nine climate and disturbance variables, the biogeography and niche of underground trees are compared with their open and closed ecosystem congeners. KEY RESULTS: Along multiple environmental gradients and in a multidimensional environmental space, underground trees inhabit significantly distinct and extreme environments relative to open and closed ecosystem congeners. Niche overlap is low among underground trees and their congeners, and also among underground trees of the four genera. Of the study taxa, Parinari underground trees inhabit hotter, drier and more seasonal environments where herbivory pressure is greatest. Ozoroa underground trees occupy relatively more fire prone environments, while Syzygium underground trees sustain the highest frost frequency and occur in relatively wetter conditions with seasonal waterlogging. Lannea underground trees are associated with the lowest temperatures, highest precipitation, and varying exposure to disturbance. CONCLUSIONS: While underground trees exhibit repeated convergent evolution, distinct environments shape the ecology and biogeography of this iconic plant functional group. The multiplicity of extreme environments related to fire, frost, herbivory and waterlogging that different underground tree taxa occupy, and the distinctiveness of these environments, should be recognised in the management of African grassy ecosystems.

5.
Mol Phylogenet Evol ; 166: 107329, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34678410

RESUMEN

The papilionoid legume genus Ormosia (Fabaceae) comprises about 150 species of trees and exhibits a striking disjunct geographical distribution between the New World- and Asian and Australasian wet tropics and subtropics. Modern classifications of Ormosia are not grounded on a well-substantiated phylogenetic hypothesis and have been limited to just portions of the geographical range of the genus. The lack of an evolutionarily-based foundation for systematic studies has hindered taxonomic work on the genus and prevented the testing of biogeographical hypotheses related to the origin of the Old World/New World disjunction and the individual dispersal histories within both areas. Here, we present the most comprehensively sampled molecular phylogeny of Ormosia to date, based on analysis of both nuclear (ITS) and plastid (matK and trnL-F) DNA sequences from 82 species of the genus. Phylogenetically-based divergence times and ancestral range estimations are employed to test hypotheses related to the biogeographical history of the genus. We find strong support for the monophyly of Ormosia and the grouping of all sampled Asian species of the genus into two comparably sized clades, one of which is sister to another large clade containing all sampled New World species. Within the New World clade, additional resolution supports the grouping of most species into three mutually exclusive subordinate clades. The remaining New World species form a fourth well-supported clade in the analyses of plastid sequences, but that result is contradicted by the analysis of ITS. With few exceptions the supported clades have not been previously recognized as taxonomic groups. The biogeographical analysis suggests that Ormosia originated in continental Asia and dispersed to the New World in the Oligocene or early Miocene via long-distance trans-oceanic dispersal. We reject the hypothesis that the inter-hemispheric disjunction in Ormosia resulted from fragmentation of a more continuous "Boreotropical" distribution since the dispersal post-dates Eocene climatic maxima. Both of the Old World clades appear to have originated in mainland Asia and subsequently dispersed into the Malay Archipelago and beyond, at least two lineages dispersing across Wallace's Line as far as the Solomon Islands and northeastern Australia. In the New World, the major clades all originated in Amazonia. Dispersal from Amazonia into peripheral areas in Central America, the Caribbean, and Extra-Amazonian Brazil occurred multiple times over varying time scales, the earliest beginning in the late Miocene. In a few cases, these dispersals were followed by local diversification, but not by reverse migration back to Amazonia. Within each of the two main areas of distribution, multiple modest bouts of oceanic dispersal were required to achieve the modern distributions.


Asunto(s)
Fabaceae , Teorema de Bayes , Evolución Biológica , Fabaceae/genética , Filogenia , Filogeografía , Plastidios/genética
6.
Syst Biol ; 70(3): 508-526, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32483631

RESUMEN

The consequences of the Cretaceous-Paleogene (K-Pg) boundary (KPB) mass extinction for the evolution of plant diversity remain poorly understood, even though evolutionary turnover of plant lineages at the KPB is central to understanding assembly of the Cenozoic biota. The apparent concentration of whole genome duplication (WGD) events around the KPB may have played a role in survival and subsequent diversification of plant lineages. To gain new insights into the origins of Cenozoic biodiversity, we examine the origin and early evolution of the globally diverse legume family (Leguminosae or Fabaceae). Legumes are ecologically (co-)dominant across many vegetation types, and the fossil record suggests that they rose to such prominence after the KPB in parallel with several well-studied animal clades including Placentalia and Neoaves. Furthermore, multiple WGD events are hypothesized to have occurred early in legume evolution. Using a recently inferred phylogenomic framework, we investigate the placement of WGDs during early legume evolution using gene tree reconciliation methods, gene count data and phylogenetic supernetwork reconstruction. Using 20 fossil calibrations we estimate a revised timeline of legume evolution based on 36 nuclear genes selected as informative and evolving in an approximately clock-like fashion. To establish the timing of WGDs we also date duplication nodes in gene trees. Results suggest either a pan-legume WGD event on the stem lineage of the family, or an allopolyploid event involving (some of) the earliest lineages within the crown group, with additional nested WGDs subtending subfamilies Papilionoideae and Detarioideae. Gene tree reconciliation methods that do not account for allopolyploidy may be misleading in inferring an earlier WGD event at the time of divergence of the two parental lineages of the polyploid, suggesting that the allopolyploid scenario is more likely. We show that the crown age of the legumes dates to the Maastrichtian or early Paleocene and that, apart from the Detarioideae WGD, paleopolyploidy occurred close to the KPB. We conclude that the early evolution of the legumes followed a complex history, in which multiple auto- and/or allopolyploidy events coincided with rapid diversification and in association with the mass extinction event at the KPB, ultimately underpinning the evolutionary success of the Leguminosae in the Cenozoic. [Allopolyploidy; Cretaceous-Paleogene (K-Pg) boundary; Fabaceae, Leguminosae; paleopolyploidy; phylogenomics; whole genome duplication events].


Asunto(s)
Extinción Biológica , Fabaceae , Animales , Evolución Biológica , Evolución Molecular , Fabaceae/genética , Fósiles , Filogenia , Poliploidía
7.
New Phytol ; 225(3): 1355-1369, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31665814

RESUMEN

Phylogenomics is increasingly used to infer deep-branching relationships while revealing the complexity of evolutionary processes such as incomplete lineage sorting, hybridization/introgression and polyploidization. We investigate the deep-branching relationships among subfamilies of the Leguminosae (or Fabaceae), the third largest angiosperm family. Despite their ecological and economic importance, a robust phylogenetic framework for legumes based on genome-scale sequence data is lacking. We generated alignments of 72 chloroplast genes and 7621 homologous nuclear-encoded proteins, for 157 and 76 taxa, respectively. We analysed these with maximum likelihood, Bayesian inference, and a multispecies coalescent summary method, and evaluated support for alternative topologies across gene trees. We resolve the deepest divergences in the legume phylogeny despite lack of phylogenetic signal across all chloroplast genes and the majority of nuclear genes. Strongly supported conflict in the remainder of nuclear genes is suggestive of incomplete lineage sorting. All six subfamilies originated nearly simultaneously, suggesting that the prevailing view of some subfamilies as 'basal' or 'early-diverging' with respect to others should be abandoned, which has important implications for understanding the evolution of legume diversity and traits. Our study highlights the limits of phylogenetic resolution in relation to rapid successive speciation.


Asunto(s)
Evolución Molecular , Fabaceae/clasificación , Fabaceae/genética , Variación Genética , Genómica , Filogenia , Secuencia de Bases , Teorema de Bayes , Genes del Cloroplasto , Funciones de Verosimilitud , Especificidad de la Especie
8.
Mol Ecol ; 29(21): 4170-4185, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32881172

RESUMEN

Hybridization has the potential to generate or homogenize biodiversity and is a particularly common phenomenon in plants, with an estimated 25% of plant species undergoing interspecific gene flow. However, hybridization in Amazonia's megadiverse tree flora was assumed to be extremely rare despite extensive sympatry between closely related species, and its role in diversification remains enigmatic because it has not yet been examined empirically. Using members of a dominant Amazonian tree family (Brownea, Fabaceae) as a model to address this knowledge gap, our study recovered extensive evidence of hybridization among multiple lineages across phylogenetic scales. More specifically, using targeted sequence capture our results uncovered several historical introgression events between Brownea lineages and indicated that gene tree incongruence in Brownea is best explained by reticulation, rather than solely by incomplete lineage sorting. Furthermore, investigation of recent hybridization using ~19,000 ddRAD loci recovered a high degree of shared variation between two Brownea species that co-occur in the Ecuadorian Amazon. Our analyses also showed that these sympatric lineages exhibit homogeneous rates of introgression among loci relative to the genome-wide average, implying a lack of selection against hybrid genotypes and persistent hybridization. Our results demonstrate that gene flow between multiple Amazonian tree species has occurred across temporal scales, and contrasts with the prevailing view of hybridization's rarity in Amazonia. Overall, our results provide novel evidence that reticulate evolution influenced diversification in part of the Amazonian tree flora, which is the most diverse on Earth.


Asunto(s)
Flujo Génico , Hibridación Genética , Brasil , Genoma , Filogenia
9.
Am J Bot ; 107(12): 1710-1735, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33253423

RESUMEN

PREMISE: Targeted enrichment methods facilitate sequencing of hundreds of nuclear loci to enhance phylogenetic resolution and elucidate why some parts of the "tree of life" are difficult (if not impossible) to resolve. The mimosoid legumes are a prominent pantropical clade of ~3300 species of woody angiosperms for which previous phylogenies have shown extensive lack of resolution, especially among the species-rich and taxonomically challenging ingoids. METHODS: We generated transcriptomes to select low-copy nuclear genes, enrich these via hybrid capture for representative species of most mimosoid genera, and analyze the resulting data using de novo assembly and various phylogenomic tools for species tree inference. We also evaluate gene tree support and conflict for key internodes and use phylogenetic network analysis to investigate phylogenetic signal across the ingoids. RESULTS: Our selection of 964 nuclear genes greatly improves phylogenetic resolution across the mimosoid phylogeny and shows that the ingoid clade can be resolved into several well-supported clades. However, nearly all loci show lack of phylogenetic signal for some of the deeper internodes within the ingoids. CONCLUSIONS: Lack of resolution in the ingoid clade is most likely the result of hyperfast diversification, potentially causing a hard polytomy of six or seven lineages. The gene set for targeted sequencing presented here offers great potential to further enhance the phylogeny of mimosoids and the wider Caesalpinioideae with denser taxon sampling, to provide a framework for taxonomic reclassification, and to study the ingoid radiation.


Asunto(s)
Fabaceae , Radiación , Evolución Biológica , Núcleo Celular/genética , Fabaceae/genética , Filogenia
10.
Proc Natl Acad Sci U S A ; 114(36): E7499-E7505, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28827317

RESUMEN

Coevolutionary models suggest that herbivores drive diversification and community composition in plants. For herbivores, many questions remain regarding how plant defenses shape host choice and community structure. We addressed these questions using the tree genus Inga and its lepidopteran herbivores in the Amazon. We constructed phylogenies for both plants and insects and quantified host associations and plant defenses. We found that similarity in herbivore assemblages between Inga species was correlated with similarity in defenses. There was no correlation with phylogeny, a result consistent with our observations that the expression of defenses in Inga is independent of phylogeny. Furthermore, host defensive traits explained 40% of herbivore community similarity. Analyses at finer taxonomic scales showed that different lepidopteran clades select hosts based on different defenses, suggesting taxon-specific histories of herbivore-host plant interactions. Finally, we compared the phylogeny and defenses of Inga to phylogenies for the major lepidopteran clades. We found that closely related herbivores fed on Inga with similar defenses rather than on closely related plants. Together, these results suggest that plant defenses might be more evolutionarily labile than the herbivore traits related to host association. Hence, there is an apparent asymmetry in the evolutionary interactions between Inga and its herbivores. Although plants may evolve under selection by herbivores, we hypothesize that herbivores may not show coevolutionary adaptations, but instead "chase" hosts based on the herbivore's own traits at the time that they encounter a new host, a pattern more consistent with resource tracking than with the arms race model of coevolution.


Asunto(s)
Fabaceae/genética , Fabaceae/parasitología , Herbivoria/genética , Interacciones Huésped-Parásitos/genética , Lepidópteros/genética , Animales , Evolución Biológica , Insectos/genética , Fenotipo , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/parasitología
11.
Proc Natl Acad Sci U S A ; 114(10): 2645-2650, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28213498

RESUMEN

We investigate patterns of historical assembly of tree communities across Amazonia using a newly developed phylogeny for the species-rich neotropical tree genus Inga We compare our results with those for three other ecologically important, diverse, and abundant Amazonian tree lineages, Swartzia, Protieae, and Guatteria Our analyses using phylogenetic diversity metrics demonstrate a clear lack of geographic phylogenetic structure, and show that local communities of Inga and regional communities of all four lineages are assembled by dispersal across Amazonia. The importance of dispersal in the biogeography of Inga and other tree genera in Amazonian and Guianan rain forests suggests that speciation is not driven by vicariance, and that allopatric isolation following dispersal may be involved in the speciation process. A clear implication of these results is that over evolutionary timescales, the metacommunity for any local or regional tree community in the Amazon is the entire Amazon basin.


Asunto(s)
Biodiversidad , Filogenia , Bosque Lluvioso , Árboles/genética , Geografía , Especificidad de la Especie , Árboles/clasificación
12.
Environ Resour Econ (Dordr) ; 76(4): 1081-1105, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32836864

RESUMEN

The covid-19 pandemic led to rapid and large-scale government intervention in economies and societies. A common policy response to covid-19 outbreaks has been the lockdown or quarantine. Designed to slow the spread of the disease, lockdowns have unintended consequences for the environment. This article examines the impact of Colombia's lockdown on forest fires, motivated by satellite data showing a particularly large upsurge of fires at around the time of lockdown implementation. We find that Colombia's lockdown is associated with an increase in forest fires compared to three different counterfactuals, constructed to simulate the expected number of fires in the absence of the lockdown. To varying degrees across Colombia's regions, the presence of armed groups is correlated with this fire upsurge. Mechanisms through which the lockdown might influence fire rates are discussed, including the mobilisation of armed groups and the reduction in the monitoring capacity of state and conservation organisations during the covid-19 outbreak. Given the fast-developing situation in Colombia, we conclude with some ideas for further research.

13.
New Phytol ; 218(2): 847-858, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29436716

RESUMEN

The need for species identification and taxonomic discovery has led to the development of innovative technologies for large-scale plant identification. DNA barcoding has been useful, but fails to distinguish among many species in species-rich plant genera, particularly in tropical regions. Here, we show that chemical fingerprinting, or 'chemocoding', has great potential for plant identification in challenging tropical biomes. Using untargeted metabolomics in combination with multivariate analysis, we constructed species-level fingerprints, which we define as chemocoding. We evaluated the utility of chemocoding with species that were defined morphologically and subject to next-generation DNA sequencing in the diverse and recently radiated neotropical genus Inga (Leguminosae), both at single study sites and across broad geographic scales. Our results show that chemocoding is a robust method for distinguishing morphologically similar species at a single site and for identifying widespread species across continental-scale ranges. Given that species are the fundamental unit of analysis for conservation and biodiversity research, the development of accurate identification methods is essential. We suggest that chemocoding will be a valuable additional source of data for a quick identification of plants, especially for groups where other methods fall short.


Asunto(s)
ADN de Plantas/genética , Fabaceae/anatomía & histología , Fabaceae/clasificación , Metabolómica/métodos , Geografía , Análisis Multivariante , Filogenia , América del Sur , Especificidad de la Especie
14.
Proc Biol Sci ; 283(1844)2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27974517

RESUMEN

Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change.


Asunto(s)
Bosques , Filogenia , Árboles/clasificación , Clima Tropical , Evolución Biológica , Ecología , América del Sur
15.
New Phytol ; 210(1): 25-37, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26558891

RESUMEN

A fundamental premise of this review is that distinctive phylogenetic and biogeographic patterns in clades endemic to different major biomes illuminate the evolutionary process. In seasonally dry tropical forests (SDTFs), phylogenies are geographically structured and multiple individuals representing single species coalesce. This pattern of monophyletic species, coupled with their old species stem ages, is indicative of maintenance of small effective population sizes over evolutionary timescales, which suggests that SDTF is difficult to immigrate into because of persistent resident lineages adapted to a stable, seasonally dry ecology. By contrast, lack of coalescence in conspecific accessions of abundant and often widespread species is more frequent in rain forests and is likely to reflect large effective population sizes maintained over huge areas by effective seed and pollen flow. Species nonmonophyly, young species stem ages and lack of geographical structure in rain forest phylogenies may reflect more widespread disturbance by drought and landscape evolution causing resident mortality that opens up greater opportunities for immigration and speciation. We recommend full species sampling and inclusion of multiple accessions representing individual species in phylogenies to highlight nonmonophyletic species, which we predict will be frequent in rain forest and savanna, and which represent excellent case studies of incipient speciation.


Asunto(s)
Ecosistema , Bosques , Clima Tropical , Madera/fisiología , Estaciones del Año , Especificidad de la Especie
16.
Mol Phylogenet Evol ; 84: 112-24, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25575702

RESUMEN

Recent deep-level phylogenies of the basal papilionoid legumes (Leguminosae, Papilionoideae) have resolved many clades, yet left the phylogenetic placement of several genera unassessed. The phylogenetically enigmatic Amazonian monospecific genus Petaladenium had been believed to be close to the genera of the Genistoid Ormosieae clade. In this paper we provide the first DNA phylogenetic study of Petaladenium and show it is not part of the large Genistoid clade, but is a new branch of the Amburaneae clade, one of the first-diverging lineages of the Papilionoideae phylogeny. This result is supported by the chemical observation that the quinolizidine alkaloids, a chemical synapomorphy of the Genistoids, are absent in Petaladenium. Parsimony and Bayesian phylogenetic analysis of nuclear ITS/5.8S and plastid matK and trnL intron agree with a new interpretation of morphology that Petaladenium is sister to Dussia, a genus comprising ∼18 species of trees largely confined to rainforests in Central America and northern South America. Petaladenium, Dussia, and Myrospermum have papilionate flowers in a clade otherwise with radial floral symmetry, loss of petals or incompletely differentiated petals. Our phylogenetic analyses also revealed well-supported resolution within the three main lineages of the ADA clade (Angylocalyceae, Dipterygeae, and Amburaneae). We also discuss further molecular phylogenetic evidence for the undersampled Amazonian genera Aldina and Monopteryx, and the tropical African Amphimas, Cordyla, Leucomphalos, and Mildbraediodendron.


Asunto(s)
Fabaceae/clasificación , Filogenia , Teorema de Bayes , América Central , ADN de Plantas/genética , ADN Espaciador Ribosómico/genética , Fabaceae/química , Intrones , Modelos Genéticos , América del Norte , Hojas de la Planta/química , Plastidios/genética , Análisis de Secuencia de ADN
17.
Ecol Lett ; 17(5): 527-36, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24589190

RESUMEN

The Amazon rain forest sustains the world's highest tree diversity, but it remains unclear why some clades of trees are hyperdiverse, whereas others are not. Using dated phylogenies, estimates of current species richness and trait and demographic data from a large network of forest plots, we show that fast demographic traits--short turnover times--are associated with high diversification rates across 51 clades of canopy trees. This relationship is robust to assuming that diversification rates are either constant or decline over time, and occurs in a wide range of Neotropical tree lineages. This finding reveals the crucial role of intrinsic, ecological variation among clades for understanding the origin of the remarkable diversity of Amazonian trees and forests.


Asunto(s)
Biodiversidad , Modelos Biológicos , Árboles/fisiología , América del Sur , Clima Tropical
18.
Proc Natl Acad Sci U S A ; 107(31): 13783-7, 2010 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-20643954

RESUMEN

The Andes are the most species-rich global biodiversity hotspot. Most research and conservation attention in the Andes has focused on biomes such as rain forest, cloud forest, and páramo, where much plant species diversity is the hypothesized result of rapid speciation associated with the recent Andean orogeny. In contrast to these mesic biomes, we present evidence for a different, older diversification history in seasonally dry tropical forests (SDTF) occupying rain-shadowed inter-Andean valleys. High DNA sequence divergence in Cyathostegia mathewsii, a shrub endemic to inter-Andean SDTF, indicates isolation for at least 5 million years of populations separated by only ca. 600 km of high cordillera in Peru. In conjunction with fossil evidence indicating the presence of SDTF in the Andes in the late Miocene, our data suggest that the disjunct small valley pockets of inter-Andean SDTF have persisted over millions of years. These forests are rich in endemic species but massively impacted, and merit better representation in future plans for science and conservation in Andean countries.


Asunto(s)
Biodiversidad , Fabaceae/genética , Filogenia , Altitud , Ecuador , Datos de Secuencia Molecular , Perú , Estaciones del Año
19.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210075, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36373925

RESUMEN

There is high potential for ecosystem restoration across tropical savannah-dominated regions, but the benefits that could be gained from this restoration are rarely assessed. This study focuses on the Brazilian Cerrado, a highly species-rich savannah-dominated region, as an exemplar to review potential restoration benefits using three metrics: net biomass gains, plant species richness and ability to connect restored and native vegetation. Localized estimates of the most appropriate restoration vegetation type (grassland, savannah, woodland/forest) for pasturelands are produced. Carbon sequestration potential is significant for savannah and woodland/forest restoration in the seasonally dry tropics (net biomass gains of 58.2 ± 37.7 and 130.0 ± 69.4 Mg ha-1). Modelled restoration species richness gains were highest in the central and south-east of the Cerrado for savannahs and grasslands, and in the west and north-west for woodlands/forests. The potential to initiate restoration projects across the whole of the Cerrado is high and four hotspot areas are identified. We demonstrate that landscape restoration across all vegetation types within heterogeneous tropical savannah-dominated regions can maximize biodiversity and carbon gains. However, conservation of existing vegetation is essential to minimizing the cost and improving the chances of restoration success. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Asunto(s)
Ecosistema , Pradera , Bosques , Biodiversidad , Secuestro de Carbono
20.
Sci Adv ; 9(7): eade4954, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36800419

RESUMEN

Early natural historians-Comte de Buffon, von Humboldt, and De Candolle-established environment and geography as two principal axes determining the distribution of groups of organisms, laying the foundations for biogeography over the subsequent 200 years, yet the relative importance of these two axes remains unresolved. Leveraging phylogenomic and global species distribution data for Mimosoid legumes, a pantropical plant clade of c. 3500 species, we show that the water availability gradient from deserts to rain forests dictates turnover of lineages within continents across the tropics. We demonstrate that 95% of speciation occurs within a precipitation niche, showing profound phylogenetic niche conservatism, and that lineage turnover boundaries coincide with isohyets of precipitation. We reveal similar patterns on different continents, implying that evolution and dispersal follow universal processes.


Asunto(s)
Biodiversidad , Ecosistema , Filogenia , Geografía , Bosque Lluvioso , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA