Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(3): e2212474120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36626556

RESUMEN

Plants respond to oxygen deprivation by activating the expression of a set of hypoxia-responsive genes (HRGs). The master regulator of this process is a small group of transcription factors belonging to group VII of the ethylene response factors (ERF-VIIs). ERF-VIIs are highly unstable under aerobic conditions due to the continuous oxidation of their characteristic Cys residue at the N terminus by plant cysteine oxidases (PCOs). Under hypoxia, PCOs are inactive and the ERF-VIIs activate transcription of the HRGs required for surviving hypoxia. However, if the plant exposed to hypoxia has limited sugar reserves, the activity of ERF-VIIs is severely dampened. This suggests that oxygen sensing by PCO/ERF-VII is fine-tuned by another sensing pathway, related to sugar or energy availability. Here, we show that oxygen sensing by PCO/ERF-VII is controlled by the energy sensor target of rapamycin (TOR). Inhibition of TOR by genetic or pharmacological approaches leads to a much lower induction of HRGs. We show that two serine residues at the C terminus of RAP2.12, a major ERF-VII, are phosphorylated by TOR and are needed for TOR-dependent activation of transcriptional activity of RAP2.12. Our results demonstrate that oxygen and energy sensing converge in plants to ensure an appropriate transcription of genes, which is essential for surviving hypoxia. When carbohydrate metabolism is inefficient in producing ATP because of hypoxia, the lower ATP content reduces TOR activity, thus attenuating the efficiency of induction of HRGs by the ERF-VIIs. This homeostatic control of the hypoxia-response is required for the plant to survive submergence.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oxígeno , Fosfatidilinositol 3-Quinasas , Adenosina Trifosfato/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbohidratos , Cisteína-Dioxigenasa/metabolismo , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hipoxia , Oxígeno/metabolismo , Azúcares/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo
2.
J Biol Chem ; 299(12): 105366, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37863264

RESUMEN

Hypoxic responses in plants involve Plant Cysteine Oxidases (PCOs). They catalyze the N-terminal cysteine oxidation of Ethylene Response Factors VII (ERF-VII) in an oxygen-dependent manner, leading to their degradation via the cysteine N-degron pathway (Cys-NDP) in normoxia. In hypoxia, PCO activity drops, leading to the stabilization of ERF-VIIs and subsequent hypoxic gene upregulation. Thus far, no chemicals have been described to specifically inhibit PCO enzymes. In this work, we devised an in vivo pipeline to discover Cys-NDP effector molecules. Budding yeast expressing AtPCO4 and plant-based ERF-VII reporters was deployed to screen a library of natural-like chemical scaffolds and was further combined with an Arabidopsis Cys-NDP reporter line. This strategy allowed us to identify three PCO inhibitors, two of which were shown to affect PCO activity in vitro. Application of these molecules to Arabidopsis seedlings led to an increase in ERF-VII stability, induction of anaerobic gene expression, and improvement of tolerance to anoxia. By combining a high-throughput heterologous platform and the plant model Arabidopsis, our synthetic pipeline provides a versatile system to study how the Cys-NDP is modulated. Its first application here led to the discovery of at least two hypoxia-mimicking molecules with the potential to impact plant tolerance to low oxygen stress.


Asunto(s)
Proteínas de Arabidopsis , Cisteína-Dioxigenasa , Inhibidores Enzimáticos , Bibliotecas de Moléculas Pequeñas , Humanos , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cisteína/metabolismo , Cisteína-Dioxigenasa/antagonistas & inhibidores , Cisteína-Dioxigenasa/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Oxígeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Plantones/efectos de los fármacos , Anaerobiosis , Degrones , Activación Enzimática/efectos de los fármacos , Proteínas Recombinantes/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Inhibidores Enzimáticos/farmacología
3.
J Exp Bot ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38622943

RESUMEN

Plant quiescence and seed dormancy can be triggered by reduced oxygen availability. Under water, oxygen depletion caused by flooding can culminate in a quiescent state, which is a plant strategy for energy preservation and survival. In adult plants, a quiescent state can be activated by sugar starvation, culminating in metabolic depression. In seeds, secondary dormancy can be activated by reduced oxygen availability, which creates an unfavourable state for germination. The physical dormancy of some seeds and buds includes barriers to external conditions, which indirectly results in hypoxia. The molecular processes that support seed dormancy and plant survival through quiescence under hypoxia include the N-degron pathway, which enables the modulation of ethylene responsive factors of group VII and downstream targets. This oxygen- and nitric oxide-dependent mechanism interacts with phytohormone-related pathways to control growth.

4.
J Exp Bot ; 75(5): 1217-1233, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37991267

RESUMEN

With recent progress in active research on flooding and hypoxia/anoxia tolerance in native and agricultural crop plants, vast knowledge has been gained on both individual tolerance mechanisms and the general mechanisms of flooding tolerance in plants. Research on carbohydrate consumption, ethanolic and lactic acid fermentation, and their regulation under stress conditions has been accompanied by investigations on aerenchyma development and the emergence of the radial oxygen loss barrier in some plant species under flooded conditions. The discovery of the oxygen-sensing mechanism in plants and unravelling the intricacies of this mechanism have boosted this very international research effort. Recent studies have highlighted the importance of oxygen availability as a signalling component during plant development. The latest developments in determining actual oxygen concentrations using minute probes and molecular sensors in tissues and even within cells have provided new insights into the intracellular effects of flooding. The information amassed during recent years has been used in the breeding of new flood-tolerant crop cultivars. With the wealth of metabolic, anatomical, and genetic information, novel holistic approaches can be used to enhance crop species and their productivity under increasing stress conditions due to climate change and the subsequent changes in the environment.


Asunto(s)
Inundaciones , Oxígeno , Oxígeno/metabolismo , Fitomejoramiento , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Desarrollo de la Planta
5.
BMC Plant Biol ; 23(1): 148, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36935480

RESUMEN

BACKGROUND: A high content in anthocyanins, for their health beneficial properties, represents an added value for fruits and vegetables. Tomato (Solanum lycopersicum) is one of the most consumed vegetables worldwide and is rich in vitamins and carotenoids. In recent years, purple-skinned tomatoes, enriched of anthocyanins, were produced recovering allelic variants from wild Solanum species. The molecular basis of the Anthocyanin fruit (Aft) locus, exploited by breeders to activate the anthocyanin synthesis in tomato epicarp, has been recently identified in the correct splicing of the R2R3 MYB gene AN2like. Aubergine (Abg) is a tomato accession which introgressed from Solanum lycopersicoides a locus activating the synthesis of anthocyanins in the fruit. The Abg locus was mapped in the region of chromosome 10 containing Aft and the possibility that Abg and Aft represented alleles of the same gene was hypothesized. RESULTS: We dissected the R2R3 MYB gene cluster located in the Abg genomic introgression and demonstrated that AN2like is correctly spliced in Abg plants and is expressed in the fruit epicarp. Moreover, its silencing specifically inhibits the anthocyanin synthesis. The Abg allele of AN2like undergoes alternative splicing and produces two proteins with different activities. Furthermore, in Abg the master regulator of the anthocyanin synthesis in tomato vegetative tissues, AN2, is very poorly expressed. Finally, a novel R2R3 MYB gene was identified: it encodes another positive regulator of the pathway, whose activity was lost in tomato and in its closest relatives. CONCLUSION: In this study, we propose that AN2like is responsible of the anthocyanin production in Abg fruits. Unlike wild type tomato, the Abg allele of AN2like is active and able to regulate its targets. Furthermore, in Abg alternative splicing leads to two forms of AN2like with different activities, likely representing a novel type of regulation of anthocyanin synthesis in tomato.


Asunto(s)
Solanum lycopersicum , Solanum melongena , Solanum , Solanum lycopersicum/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Antocianinas/metabolismo , Solanum melongena/genética , Solanum/genética , Plantas Modificadas Genéticamente/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Plant Physiol ; 190(4): 2617-2636, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-35972350

RESUMEN

A plant's oxygen supply can vary from normal (normoxia) to total depletion (anoxia). Tolerance to anoxia is relevant to wetland species, rice (Oryza sativa) cultivation, and submergence tolerance of crops. Decoding and transmitting calcium (Ca) signals may be an important component to anoxia tolerance; however, the contribution of intracellular Ca transporters to this process is poorly understood. Four functional cation/proton exchangers (CAX1-4) in Arabidopsis (Arabidopsis thaliana) help regulate Ca homeostasis around the vacuole. Our results demonstrate that cax1 mutants are more tolerant to both anoxic conditions and submergence. Using phenotypic measurements, RNA-sequencing, and proteomic approaches, we identified cax1-mediated anoxia changes that phenocopy changes present in anoxia-tolerant crops: altered metabolic processes, diminished reactive oxygen species production post anoxia, and altered hormone signaling. Comparing wild-type and cax1 expressing genetically encoded Ca indicators demonstrated altered cytosolic Ca signals in cax1 during reoxygenation. Anoxia-induced Ca signals around the plant vacuole are involved in the control of numerous signaling events related to adaptation to low oxygen stress. This work suggests that cax1 anoxia response pathway could be engineered to circumvent the adverse effects of flooding that impair production agriculture.


Asunto(s)
Arabidopsis , Proteínas de Transporte de Catión , Humanos , Vacuolas/metabolismo , Calcio/metabolismo , Antiportadores/metabolismo , Protones , Proteómica , Proteínas de Transporte de Catión/metabolismo , Arabidopsis/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Oxígeno/metabolismo
7.
Plant Cell Environ ; 46(2): 607-620, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36479691

RESUMEN

Group VII ethylene response factors (ERF-VII) are plant-specific transcription factors (TFs) known for their role in the activation of hypoxia-responsive genes under low oxygen stress but also in plant endogenous hypoxic niches. However, their function in the microaerophilic nitrogen-fixing nodules of legumes has not yet been investigated. We investigated regulation and the function of the two Medicago truncatula ERF-VII TFs (MtERF74 and MtERF75) in roots and nodules, MtERF74 and MtERF75 in response to hypoxia stress and during the nodulation process using an RNA interference strategy and targeted proteolysis of MtERF75. Knockdown of MtERF74 and MtERF75 partially blocked the induction of hypoxia-responsive genes in roots exposed to hypoxia stress. In addition, a significant reduction in nodulation capacity and nitrogen fixation activity was observed in mature nodules of double knockdown transgenic roots. Overall, the results indicate that MtERF74 and MtERF75 are involved in the induction of MtNR1 and Pgb1.1 expression for efficient Phytogb-nitric oxide respiration in the nodule.


Asunto(s)
Medicago truncatula , Fijación del Nitrógeno , Fijación del Nitrógeno/genética , Nódulos de las Raíces de las Plantas/metabolismo , Medicago truncatula/fisiología , Etilenos/metabolismo , Hipoxia/metabolismo , Simbiosis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
J Exp Bot ; 74(14): 4277-4289, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37100757

RESUMEN

Global climate change has dramatically increased flooding events, which have a strong impact on crop production. Barley (Hordeum vulgare) is one of the most important cereals and its cultivation includes a broad range of different environments. We tested the capacity to germinate of a large barley panel after a short period of submergence followed by a period of recovery. We demonstrate that sensitive barley varieties activate underwater secondary dormancy because of a lower permeability to oxygen dissolved in water. In sensitive barley accessions, secondary dormancy is removed by nitric oxide donors. The results of a genome-wide association study uncovered a Laccase gene located in a region of significant marker-trait association that is differently regulated during grain development and plays a key role in this process. Our findings will help breeders to improve the genetics of barley, thereby increasing the capacity of seeds to germinate after a short period of flooding.


Asunto(s)
Germinación , Hordeum , Germinación/genética , Hordeum/genética , Estudio de Asociación del Genoma Completo , Semillas/genética , Grano Comestible/genética , Hipoxia
9.
New Phytol ; 235(6): 2176-2182, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35794849

RESUMEN

Plant microRNAs (miRNAs) are small regulatory RNAs that are encoded by endogenous miRNA genes and regulate gene expression through gene silencing, by inducing degradation of their target messenger RNA or by inhibiting its translation. Some miRNAs are mobile molecules inside the plant, and increasing experimental evidence has demonstrated that miRNAs represent molecules that are exchanged between plants, their pathogens, and parasitic plants. It has also been shown that miRNAs are secreted into the external growing medium and that these miRNAs regulate gene expression and the phenotype of nearby receiving plants, thus defining a new concept in plant communication. However, the mechanism of miRNA secretion and uptake by plant cells still needs to be elucidated.


Asunto(s)
Arabidopsis , MicroARNs , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , MicroARNs/genética , MicroARNs/metabolismo , Plantas/genética , Plantas/metabolismo , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo
10.
Plant Physiol ; 185(1): 228-239, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33631808

RESUMEN

Optimal plant growth performance requires that the presence and action of growth signals, such as gibberellins (GAs), are coordinated with the availability of photo-assimilates. Here, we studied the links between GA biosynthesis and carbon availability, and the subsequent effects on growth. We established that carbon availability, light and dark cues, and the circadian clock ensure the timing and magnitude of GA biosynthesis and that disruption of these factors results in reduced GA levels and expression of downstream genes. Carbon-dependent nighttime induction of gibberellin 3-beta-dioxygenase 1 (GA3ox1) was severely hampered when preceded by reduced daytime light availability, leading specifically to reduced bioactive GA4 levels, and coinciding with a decline in leaf expansion rate during the night. We attributed this decline in leaf expansion mostly to reduced photo-assimilates. However, plants in which GA limitation was alleviated had significantly improved leaf expansion, demonstrating the relevance of GAs in growth control under varying carbon availability. Carbon-dependent expression of upstream GA biosynthesis genes (Kaurene synthase and gibberellin 20 oxidase 1, GA20ox1) was not translated into metabolite changes within this short timeframe. We propose a model in which the extent of nighttime biosynthesis of bioactive GA4 by GA3ox1 is determined by nighttime consumption of starch reserves, thus providing day-to-day adjustments of GA responses.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Carbono/metabolismo , Relojes Circadianos/fisiología , Giberelinas/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Adaptación Ocular/fisiología , Adaptación a la Oscuridad/fisiología , Variación Genética , Genotipo , Desarrollo de la Planta/efectos de los fármacos
11.
Plant J ; 104(4): 979-994, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32860440

RESUMEN

Plants need to attune their stress responses to the ongoing developmental programmes to maximize their efficacy. For instance, successful submergence adaptation is often associated with a delicate balance between saving resources and their expenditure to activate measures that allow stress avoidance or attenuation. We observed a significant decrease in submergence tolerance associated with ageing in Arabidopsis thaliana, with a critical step between 2 and 3 weeks of post-germination development. This sensitization to flooding was concomitant with the transition from juvenility to adulthood. Transcriptomic analyses indicated that a group of genes related to abscisic acid and oxidative stress response was more highly expressed in juvenile plants than in adult ones. These genes are induced by the endomembrane tethered transcription factor ANAC017 that was in turn activated by submergence-associated oxidative stress. A combination of molecular, biochemical and genetic analyses showed that these genes are located in genomic regions that move towards a heterochromatic state with adulthood, as marked by lysine 4 trimethylation of histone H3. We concluded that, while the mechanisms of flooding stress perception and signal transduction were unaltered between juvenile and adult phases, the sensitivity that these mechanisms set into action is integrated, via epigenetic regulation, into the developmental programme of the plant.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Epigénesis Genética , Oxígeno/metabolismo , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Adaptación Fisiológica , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Perfilación de la Expresión Génica , Germinación , Estrés Oxidativo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente , Estrés Fisiológico , Factores de Transcripción/genética
12.
New Phytol ; 229(1): 57-63, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31733144

RESUMEN

The major consequence of hypoxia is a dramatic reduction in energy production. At the onset of hypoxia, both oxygen and ATP availability decrease. Oxygen and energy sensing therefore converge to induce an adaptive response at both the transcriptional and translational levels. Oxygen sensing results in stabilization of the transcription factors that activate hypoxia-response genes, including enzymes required for efficient sugar metabolism, allowing plants to produce enough energy to ensure survival. The translation of the resulting mRNAs is mediated by SnRK1, acting as an energy sensor. However, as soon as the sugar availability decreases, a homeostatic mechanism, detecting sugar starvation, dampens the hypoxia-dependent transcription to reduce energy consumption and preserves carbon reserves for regrowth when oxygen availability is restored.


Asunto(s)
Transducción de Señal , Azúcares , Hipoxia de la Célula , Hipoxia , Oxígeno , Factores de Transcripción/metabolismo
13.
New Phytol ; 229(1): 173-185, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32124454

RESUMEN

Low oxygen availability often is associated with soil waterlogging or submergence, but may occur also as hypoxic niches in otherwise aerobic tissues. Experimental evidence assigns a role in Botrytis cinerea resistance to a group of oxygen-unstable Ethylene Response Factors (ERF-VII). Given that infection by B. cinerea often occurs in aerobic organs such as leaves, where ERF-VII stability should be compromised, we explored the possibility of local leaf hypoxia at the site of infection. We analyzed the expression of hypoxia-responsive genes in infected leaves. Confocal microscopy was utilized to verify the localization of the ERF-VII protein RAP2.12. Oxygen concentration was measured to evaluate the availability of oxygen (O2 ). We discovered that infection by B. cinerea induces increased respiration, leading to a drastic drop in the O2 concentration in an otherwise fully aerobic leaf. The establishment of a local hypoxic area results in stabilization and nuclear relocalization of RAP2.12. The possible roles of defence elicitors, ABA and ethylene were evaluated. Local hypoxia at the site of B. cinerea infection allows the stabilization of ERF-VII proteins. Hypoxia at the site of pathogen infection generates a nearly O2 -free environment that may affect the stability of other N-degron-regulated proteins as well as the metabolism of elicitors.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Botrytis , Regulación de la Expresión Génica de las Plantas , Hipoxia , Enfermedades de las Plantas , Hojas de la Planta/metabolismo , Factores de Transcripción/metabolismo
14.
New Phytol ; 229(1): 85-93, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32609884

RESUMEN

Rice coleoptile elongation under submergence guarantees fast seedling establishment in the field. We investigated the role of auxin in influencing the capacity of rice to produce a long coleoptile under water. In order to explore the complexity of auxin's role in coleoptile elongation, we used gene expression analysis, confocal microscopy of an auxin-responsive fluorescent reporter, gas chromatography coupled to tandem mass spectrometry (GC-MS/MS), and T-DNA insertional mutants of an auxin transport protein. We show that a higher auxin availability in the coleoptile correlates with the final coleoptile length under submergence. We also identified the auxin influx carrier AUX1 as a component influencing this trait under submergence. The coleoptile tip is involved in the final length of rice varieties harbouring a long coleoptile. Our experimental results indicate that auxin biosynthesis and transport underlies the differential elongation between short and long coleoptile-harbouring japonica rice varieties.


Asunto(s)
Oryza , Cotiledón , Ácidos Indolacéticos , Oryza/genética , Plantones , Espectrometría de Masas en Tándem
15.
Plant Physiol ; 182(1): 287-300, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31358683

RESUMEN

In plants, hypoxia can be induced by submergence, and the lack of oxygen impairs mitochondrial respiration, thus affecting the plant's energy status. Hypoxia has major effects on gene expression; these changes induce key responses that help meet the needs of the stressed plant. However, little is known about the possible role of RNA signaling in the regulation of gene expression under limited oxygen availability. Here, we report the contribution of ARGONAUTE1 (AGO1) to hypoxia-induced gene regulation in Arabidopsis (Arabidopsis thaliana). Submergence induced changes in levels of the microRNAs miR2936 and miR398, but this had no obvious effects on their putative target mRNA levels. However, we found that ago1-27 plants are intolerant to submergence and transcriptome analysis identified genes whose regulation requires functional AGO1. Analysis of mutants affected in various branches of RNA signaling highlighted the convergence of AGO1 signaling with the AGO4-dependent RNA-directed DNA methylation (RdDM) pathway. AGO4-dependent RdDM represses the expression of HOMOLOG OF RPW8 4 (HR4) and alters its response to submergence. Remarkably, methylation of the second exon of HR4 is not only reduced in ago4-1 but also in plants overexpressing a constitutively stable version of the oxygen sensor RELATED TO APETALA2 12 (RAP2.12), indicating convergence of oxygen signaling with epigenetic regulation of gene expression. Therefore, our results identify a role for AGO1 and AGO4 RNA-silencing pathways in low-oxygen signaling in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hipoxia/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Metilación de ADN/genética , Epigénesis Genética/genética , Regulación de la Expresión Génica de las Plantas/genética , Hipoxia/genética , Mutación/genética , Regiones Promotoras Genéticas/genética , ARN de Planta/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
16.
Plant Physiol ; 180(3): 1614-1628, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31019003

RESUMEN

Poplar (Populus spp.) is a tree species considered for the remediation of soil contaminated by metals, including zinc (Zn). To improve poplar's capacity for Zn assimilation and compartmentalization, it is necessary to understand the physiological and biochemical mechanisms that enable these features as well as their regulation at the molecular level. We observed that the molecular response of poplar roots to Zn excess overlapped with that activated by hypoxia. Therefore, we tested the effect of Zn excess on hypoxia-sensing components and investigated the consequence of root hypoxia on poplar fitness and Zn accumulation capacity. Our results suggest that high intracellular Zn concentrations mimic iron deficiency and inhibit the activity of the oxygen sensors Plant Cysteine Oxidases, leading to the stabilization and activation of ERF-VII transcription factors, which are key regulators of the molecular response to hypoxia. Remarkably, excess Zn and waterlogging similarly decreased poplar growth and development. Simultaneous excess Zn and waterlogging did not exacerbate these parameters, although Zn uptake was limited. This study unveils the contribution of the oxygen-sensing machinery to the Zn excess response in poplar, which may be exploited to improve Zn tolerance and increase Zn accumulation capacity in plants.


Asunto(s)
Cisteína-Dioxigenasa/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Populus/metabolismo , Zinc/metabolismo , Adaptación Fisiológica/genética , Anaerobiosis , Biodegradación Ambiental , Cisteína-Dioxigenasa/genética , Regulación de la Expresión Génica de las Plantas , Espacio Intracelular/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/genética , Populus/genética
17.
Plant Physiol ; 179(3): 986-1000, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30459266

RESUMEN

Due to the involvement of oxygen in many essential metabolic reactions, all living organisms have developed molecular systems that allow adaptive physiological and metabolic transitions depending on oxygen availability. In mammals, the expression of hypoxia-response genes is controlled by the heterodimeric Hypoxia-Inducible Factor. The activity of this transcriptional regulator is linked mainly to the oxygen-dependent hydroxylation of conserved proline residues in its α-subunit, carried out by prolyl-hydroxylases, and subsequent ubiquitination via the E3 ligase von Hippel-Lindau tumor suppressor, which targets Hypoxia-Inducible Factor-α to the proteasome. By exploiting bioengineered versions of this mammalian oxygen sensor, we designed and optimized a synthetic device that drives gene expression in an oxygen-dependent fashion in plants. Transient assays in Arabidopsis (Arabidopsis thaliana) mesophyll protoplasts indicated that a combination of the yeast Gal4/upstream activating sequence system and the mammalian oxygen sensor machinery can be used effectively to engineer a modular, oxygen-inducible transcriptional regulator. This synthetic device also was shown to be selectively controlled by oxygen in whole plants when its components were expressed stably in Arabidopsis seedlings. We envision the exploitation of our genetically encoded controllers to generate plants able to switch gene expression selectively depending on oxygen availability, thereby providing a proof of concept for the potential of synthetic biology to assist agricultural practices in environments with variable oxygen provision.


Asunto(s)
Arabidopsis/metabolismo , Técnicas Biosensibles/métodos , Oxígeno/química , Animales , Arabidopsis/genética , Hipoxia de la Célula , Regulación de la Expresión Génica de las Plantas/genética , Ingeniería Genética/métodos , Hidroxilación , Oxígeno/metabolismo , Transducción de Señal , Biología Sintética , Factores de Transcripción
18.
J Exp Bot ; 71(9): 2678-2689, 2020 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-32053194

RESUMEN

Hypoxic conditions often arise from waterlogging and flooding, affecting several aspects of plant metabolism, including the uptake of nutrients. We identified a member of the CALCINEURIN ß-LIKE INTERACTING PROTEIN KINASE (CIPK) family in Arabidopsis, CIPK25, which is induced in the root endodermis under low-oxygen conditions. A cipk25 mutant exhibited higher sensitivity to anoxia in conditions of potassium limitation, suggesting that this kinase is involved in the regulation of potassium uptake. Interestingly, we found that CIPK25 interacts with AKT1, the major inward rectifying potassium channel in Arabidopsis. Under anoxic conditions, cipk25 mutant seedlings were unable to maintain potassium concentrations at wild-type levels, suggesting that CIPK25 likely plays a role in modulating potassium homeostasis under low-oxygen conditions. In addition, cipk25 and akt1 mutants share similar developmental defects under waterlogging, further supporting an interplay between CIPK25 and AKT1.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oxígeno , Potasio/metabolismo , Proteínas Serina-Treonina Quinasas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calcineurina , Homeostasis , Raíces de Plantas/metabolismo , Canales de Potasio/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
19.
Int J Mol Sci ; 21(24)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33321742

RESUMEN

Small RNAs regulate various biological process involved in genome stability, development, and adaptive responses to biotic or abiotic stresses. Small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs). MicroRNAs (miRNAs) are regulators of gene expression that affect the transcriptional and post-transcriptional regulation in plants and animals through RNA interference (RNAi). miRNAs are endogenous small RNAs that originate from the processing of non-coding primary miRNA transcripts folding into hairpin-like structures. The mature miRNAs are incorporated into the RNA-induced silencing complex (RISC) and drive the Argonaute (AGO) proteins towards their mRNA targets. siRNAs are generated from a double-stranded RNA (dsRNA) of cellular or exogenous origin. siRNAs are also involved in the adaptive response to biotic or abiotic stresses. The response of plants to hypoxia includes a genome-wide transcription reprogramming. However, little is known about the involvement of RNA signaling in gene regulation under low oxygen availability. Interestingly, miRNAs have been shown to play a role in the responses to hypoxia in animals, and recent evidence suggests that hypoxia modulates the expression of various miRNAs in plant systems. In this review, we describe recent discoveries on the impact of RNAi on plant responses to hypoxic stress in plants.


Asunto(s)
Silenciador del Gen , Magnoliopsida/genética , MicroARNs/metabolismo , Oxígeno/metabolismo , ARN Interferente Pequeño/metabolismo , Estrés Fisiológico , Regulación de la Expresión Génica de las Plantas , Magnoliopsida/metabolismo , MicroARNs/genética , ARN Interferente Pequeño/genética
20.
Plant Physiol ; 176(2): 1286-1298, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29084901

RESUMEN

Plants respond to hypoxia, often caused by submergence, by expressing a specific set of genes that contribute to acclimation to this unfavorable environmental condition. Genes induced by low oxygen include those encoding enzymes for carbohydrate metabolism and fermentation, pathways that are required for survival. Sugar availability is therefore of crucial importance for energy production under hypoxia. Here, we show that Arabidopsis (Arabidopsis thaliana) plants require starch for surviving submergence as well as for ensuring the rapid induction of genes encoding enzymes required for anaerobic metabolism. The starchless pgm mutant is highly susceptible to submergence and also fails to induce anaerobic genes at the level of the wild type. Treating wild-type plants under conditions inducing sugar starvation results in a weak induction of alcohol dehydrogenase and other anaerobic genes. Induction of gene expression under hypoxia requires transcription factors belonging to group VII ethylene response factors (ERF-VII) that, together with plant Cys oxidases, act as an oxygen-sensing mechanism. We show that repression of this pathway by sugar starvation occurs downstream of the hypoxia-dependent stabilization of ERF-VII proteins and independently of the energy sensor protein kinases SnRK1.1 (SNF1-related kinase 1.1).


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Oxígeno/metabolismo , Almidón/metabolismo , Anaerobiosis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Sacarosa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA