Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37511395

RESUMEN

High temperature impairs starch biosynthesis in developing rice grains and thereby increases chalkiness, affecting the grain quality. Genome encoded microRNAs (miRNAs) fine-tune target transcript abundances in a spatio-temporal specific manner, and this mode of gene regulation is critical for a myriad of developmental processes as well as stress responses. However, the role of miRNAs in maintaining rice grain quality/chalkiness during high daytime temperature (HDT) stress is relatively unknown. To uncover the role of miRNAs in this process, we used five contrasting rice genotypes (low chalky lines Cyp, Ben, and KB and high chalky lines LaGrue and NB) and compared the miRNA profiles in the R6 stage caryopsis samples from plants subjected to prolonged HDT (from the onset of fertilization through R6 stage of caryopsis development). Our small RNA analysis has identified approximately 744 miRNAs that can be grouped into 291 families. Of these, 186 miRNAs belonging to 103 families are differentially regulated under HDT. Only two miRNAs, Osa-miR444f and Osa-miR1866-5p, were upregulated in all genotypes, implying that the regulations greatly varied between the genotypes. Furthermore, not even a single miRNA was commonly up/down regulated specifically in the three tolerant genotypes. However, three miRNAs (Osa-miR1866-3p, Osa-miR5150-3p and canH-miR9774a,b-3p) were commonly upregulated and onemiRNA (Osa-miR393b-5p) was commonly downregulated specifically in the sensitive genotypes (LaGrue and NB). These observations suggest that few similarities exist within the low chalky or high chalky genotypes, possibly due to high genetic variation. Among the five genotypes used, Cypress and LaGrue are genetically closely related, but exhibit contrasting chalkiness under HDT, and thus, a comparison between them is most relevant. This comparison revealed a general tendency for Cypress to display miRNA regulations that could decrease chalkiness under HDT compared with LaGrue. This study suggests that miRNAs could play an important role in maintaining grain quality in HDT-stressed rice.


Asunto(s)
MicroARNs , Oryza , Humanos , Temperatura , Oryza/genética , Calor , Grano Comestible/genética , MicroARNs/genética
2.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37894848

RESUMEN

Rice is the most important staple crop for the sustenance of the world's population, and drought is a major factor limiting rice production. Quantitative trait locus (QTL) analysis of drought-resistance-related traits was conducted on a recombinant inbred line (RIL) population derived from the self-fed progeny of a cross between the drought-resistant tropical japonica U.S. adapted cultivar Kaybonnet and the drought-sensitive indica cultivar ZHE733. K/Z RIL population of 198 lines was screened in the field at Fayetteville (AR) for three consecutive years under controlled drought stress (DS) and well-watered (WW) treatment during the reproductive stage. The effects of DS were quantified by measuring morphological traits, grain yield components, and root architectural traits. A QTL analysis using a set of 4133 single nucleotide polymorphism (SNP) markers and the QTL IciMapping identified 41 QTLs and 184 candidate genes for drought-related traits within the DR-QTL regions. RT-qPCR in parental lines was used to confirm the putative candidate genes. The comparison between the drought-resistant parent (Kaybonnet) and the drought-sensitive parent (ZHE733) under DS conditions revealed that the gene expression of 15 candidate DR genes with known annotations and two candidate DR genes with unknown annotations within the DR-QTL regions was up-regulated in the drought-resistant parent (Kaybonnet). The outcomes of this research provide essential information that can be utilized in developing drought-resistant rice cultivars that have higher productivity when DS conditions are prevalent.


Asunto(s)
Oryza , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Oryza/genética , Resistencia a la Sequía , Fenotipo
3.
Plant Physiol ; 182(2): 1083-1099, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31767693

RESUMEN

The conversion of oleic acid (C18:1) to linoleic acid (C18:2) in the endoplasmic reticulum is critical to the accumulation of polyunsaturated fatty acids in seeds and other tissues, and this reaction is catalyzed by a Δ12-desaturase, FATTY ACID DESATURASE2 (FAD2). Here, we report that the tomato (Solanum lycopersicum) genome harbors two genes, SlFAD2-1 and SlFAD2-2, which encode proteins with in vitro Δ12-desaturase activity. In addition, tomato has seven divergent FAD2 members that lack Δ12-desaturase activity and differ from canonical FAD2 enzymes at multiple amino acid positions important to enzyme function. Whereas SlFAD2-1 and SlFAD2-2 are downregulated by biotic stress, the majority of divergent FAD2 genes in tomato are upregulated by one or more stresses. In particular, SlFAD2-7 is induced by the potato aphid (Macrosiphum euphorbiae) and has elevated constitutive expression levels in suppressor of prosystemin-mediated responses2 (spr2), a tomato mutant with enhanced aphid resistance and altered fatty acid profiles. Virus-induced gene silencing of SlFAD2-7 in spr2 results in significant increases in aphid population growth, indicating that a divergent FAD2 gene contributes to aphid resistance in this genotype. Thus, the FAD2 gene family in tomato is important both to primary fatty acid metabolism and to responses to biotic stress.


Asunto(s)
Áfidos/inmunología , Resistencia a la Enfermedad/genética , Ácido Graso Desaturasas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Solanum lycopersicum/enzimología , Estrés Fisiológico/genética , Animales , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ciclopentanos/metabolismo , Resistencia a la Enfermedad/inmunología , Ácido Graso Desaturasas/genética , Ácidos Grasos/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Ontología de Genes , Silenciador del Gen , Solanum lycopersicum/genética , Solanum lycopersicum/inmunología , Solanum lycopersicum/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Oxilipinas/metabolismo , Filogenia , Regiones Promotoras Genéticas , Homología de Secuencia de Aminoácido , Transcriptoma
4.
Genomics ; 111(4): 629-635, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-29626511

RESUMEN

Salt stress causes foliar chlorosis and scorch, plant stunting, and eventually yield reduction in soybean. There are differential responses, namely tolerance (excluder) and intolerance (includer), among soybean germplasm. However, the genetic and physiological mechanisms for salt tolerance is complex and not clear yet. Based on the results from the screening of the RA-452 x Osage mapping population, two F4:6 lines with extreme responses, most tolerant and most sensitive, were selected for a time-course gene expression study in which the 250 mM NaCl treatment was initially imposed at the V1 stage and continued for 24 h (hrs). Total RNA was isolated from the leaves harvested at 0, 6, 12, 24 h after the initiation of salt treatment, respectively. The RNA-Seq analysis was conducted to compare the salt tolerant genotype with salt sensitive genotype at each time point using RNA-Seq pipeline method. A total of 2374, 998, 1746, and 630 differentially expressed genes (DEGs) between salt-tolerant line and salt-sensitive line, were found at 0, 6, 12, and 24 h, respectively. The expression patterns of 154 common DEGs among all the time points were investigated, of which, six common DEGs were upregulated and seven common DEGs were downregulated in salt-tolerant line. Moreover, 13 common DEGs were dramatically expressed at all the time points. Based on Log2 (fold change) of expression level of salt-tolerant line to salt-sensitive line and gene annotation, Glyma.02G228100, Glyma.03G226000, Glyma.03G031000, Glyma.03G031400, Glyma.04G180300, Glyma.04G180400, Glyma.05 g204600, Glyma.08G189600, Glyma.13G042200, and Glyma.17G173200, were considered to be the key potential genes involving in the salt-tolerance mechanism in the soybean salt-tolerant line.


Asunto(s)
Glycine max/genética , Tolerancia a la Sal , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Genotipo , Glycine max/fisiología
5.
Plant Physiol ; 177(3): 1198-1217, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29844229

RESUMEN

Long noncoding RNAs (lncRNAs) have been characterized extensively in animals and are involved in several processes, including homeobox gene expression and X-chromosome inactivation. In comparison, there has been much less detailed characterization of plant lncRNAs, and the number of distinct lncRNAs encoded in plant genomes and their regulation by developmental and epigenetic mechanisms remain largely unknown. Here, we analyzed transcriptome data from Asian rice (Oryza sativa) and identified 6,309 long intergenic noncoding RNAs (lincRNAs), focusing on their expression in reproductive tissues and organs. Most O. sativa lincRNAs were expressed in a highly tissue-specific manner, with an unexpectedly high fraction specifically expressed in male gametes. Mutation of a component of the Polycomb Repressive Complex2 (PRC2) resulted in derepression of another large class of lincRNAs, whose expression is correlated with H3K27 trimethylation in developing panicles. Overlap with the sperm cell-specific lincRNAs suggests that epigenetic repression of lincRNAs in the panicles was partially relieved in the male germline. Expression of a subset of lincRNAs also showed modulation by drought in reproductive tissues. Comparison with other cereal genomes showed that the lincRNAs generally have low levels of conservation at both the sequence and structural levels. Use of a novelty detection support vector machine model enabled the detection of nucleotide sequence and structural homology in ∼10% and ∼4% of the lincRNAs in genomes of purple false brome (Brachypodium distachyon) and maize (Zea mays), respectively. This is the first study to report on a large number of lncRNAs that are targets of repression by PRC2 rather than mediating regulation via PRC2. That the vast majority of the lincRNAs reported here do not overlap with those of other rice studies indicates that these are a significant addition to the known lincRNAs in rice.


Asunto(s)
Oryza/genética , Polen/genética , Complejo Represivo Polycomb 2/genética , ARN Largo no Codificante/genética , Secuencia de Bases , Brachypodium/genética , Cromatina/genética , Secuencia Conservada , Sequías , Represión Epigenética , Regulación de la Expresión Génica de las Plantas , Metilación , Complejo Represivo Polycomb 2/metabolismo , ARN de Planta , Alineación de Secuencia/métodos , Máquina de Vectores de Soporte
6.
Plant Dis ; 103(8): 1947-1953, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31140923

RESUMEN

Charcoal rot of soybean, caused by Macrophomina phaseolina, is a disease of economic significance in the United States. Although there are soybean cultivars with moderate resistance, identifying and quantifying resistance is challenging. Existing assays are time consuming, and results are often highly variable. The objectives of this research were to (i) create a reproducible seed plate assay (SPA) for charcoal rot resistance and (ii) correlate field-based disease assessments with SPA results on diverse soybean accessions. To develop the SPA, surface-disinfected seeds from eight soybean genotypes (representing three susceptible and five resistant cultivars) were placed on water agar plates inoculated with M. phaseolina. After incubation at room temperature in darkness for 7 days, percent germination was determined for each cultivar relative to the germination on noninoculated plates. Results from SPA were in general agreement with published responses. None of the soybean genotypes showed complete resistance to M. phaseolina. For the second objective, charcoal rot resistance in 18 soybean accessions was assayed with SPA, and results were analyzed for correlation with field disease assessments from Stuttgart, AR, from 2011 to 2014 and from Rohwer, AR, in 2011 and 2012. SPA consistently categorized soybean genotype resistance compared with field disease assessment averages, and results were consistent with previously published resistance determinations. SPA was significantly correlated with percent height of internal stem discoloration (PHSD) at Stuttgart from 2011 to 2013 and in 2012 at Rohwer, with root and stem severity (RSS) at Rohwer in 2012, and with tap root colonization (CFU) at Stuttgart in 2012. SPA was significantly correlated to yield at Stuttgart in 2011, 2013, and 2014, and in 2011 and 2012 at Rohwer. Yield was not correlated to RSS, PHSD, or CFU at either location or in any year. Therefore, SPA is a reproducible and rapid assay for charcoal rot resistance in soybean and is significantly associated to field performance.


Asunto(s)
Ascomicetos , Glycine max , Ascomicetos/fisiología , Resistencia a la Enfermedad/genética , Genotipo , Enfermedades de las Plantas/microbiología , Semillas/microbiología , Glycine max/genética , Glycine max/microbiología
7.
Plant J ; 88(3): 437-451, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27402171

RESUMEN

Here we describe an uncharacterized gene that negatively influences Arabidopsis growth and reproductive development. DRINK ME (DKM; bZIP30) is a member of the bZIP transcription factor family, and is expressed in meristematic tissues such as the inflorescence meristem (IM), floral meristem (FM), and carpel margin meristem (CMM). Altered DKM expression affects meristematic tissues and reproductive organ development, including the gynoecium, which is the female reproductive structure and is determinant for fertility and sexual reproduction. A microarray analysis indicates that DKM overexpression affects the expression of cell cycle, cell wall, organ initiation, cell elongation, hormone homeostasis, and meristem activity genes. Furthermore, DKM can interact in yeast and in planta with proteins involved in shoot apical meristem maintenance such as WUSCHEL, KNAT1/BP, KNAT2 and JAIBA, and with proteins involved in medial tissue development in the gynoecium such as HECATE, BELL1 and NGATHA1. Taken together, our results highlight the relevance of DKM as a negative modulator of Arabidopsis growth and reproductive development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Meristema/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Meristema/genética , Factores de Transcripción/genética
8.
Biochem Biophys Res Commun ; 471(1): 253-9, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26855133

RESUMEN

Cold stress is a major factor affecting rice (Oryza sativa) growth and productivity, limiting its distribution worldwide. Rice production is affected primarily due to its vulnerability to cold stress at seedling stage, as well as reproductive stage leading to spikelet sterility. We report here the analysis of 21 diverse rice genotypes from the USDA mini-core collection for cold tolerance and categorized their tolerance levels on the basis of reduction in growth measured by root and shoot length. The screening identified 12 cold tolerant genotypes from which six tolerant genotypes were characterized at the vegetative stage for cold tolerance and gas-exchange parameters. Two tolerant and two sensitive genotypes were used further for gene expression analysis. Lipid Transfer Protein (LTP) genes showed a clear difference in expression between cold tolerant and sensitive genotypes suggesting that they are good candidates for engineering cold tolerance in rice. Nipponbare was identified as a cold tolerant genotype with stress tolerance mechanism potentially operating via both ABA dependent and independent pathways.


Asunto(s)
Proteínas Portadoras/genética , Respuesta al Choque por Frío/genética , Regulación de la Expresión Génica de las Plantas/genética , Oryza/fisiología , Fotosíntesis/genética , Proteínas de Plantas/genética , Genotipo , Oryza/clasificación , Especificidad de la Especie
9.
Proc Natl Acad Sci U S A ; 110(23): 9559-64, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23671085

RESUMEN

The jasmonate family of phytohormones plays central roles in plant development and stress acclimation. However, the architecture of their signaling circuits remains largely unknown. Here we describe a jasmonate family binding protein, cyclophilin 20-3 (CYP20-3), which regulates stress-responsive cellular redox homeostasis. (+)-12-Oxo-phytodienoic acid (OPDA) binding promotes CYP20-3 to form a complex with serine acetyltransferase 1, which triggers the formation of a hetero-oligomeric cysteine synthase complex with O-acetylserine(thiol)lyase B in chloroplasts. The cysteine synthase complex formation then activates sulfur assimilation that leads to increased levels of thiol metabolites and the buildup of cellular reduction potential. The enhanced redox capacity in turn coordinates the expression of a subset of OPDA-responsive genes. Thus, we conclude that CYP20-3 is a key effector protein that links OPDA signaling to amino acid biosynthesis and cellular redox homeostasis in stress responses.


Asunto(s)
Cloroplastos/metabolismo , Ciclofilinas/metabolismo , Ácidos Grasos Insaturados/metabolismo , Homeostasis/fisiología , Estrés Oxidativo/fisiología , Transducción de Señal/fisiología , Aminoácidos/biosíntesis , Arabidopsis , Cromatografía de Afinidad , Ciclopentanos/metabolismo , Oxidación-Reducción , Oxilipinas/metabolismo , Mapas de Interacción de Proteínas , Serina O-Acetiltransferasa/metabolismo
10.
Plant J ; 80(1): 69-81, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25039392

RESUMEN

Fruits are complex plant structures that nurture seeds and facilitate their dispersal. The Arabidopsis fruit is termed silique. It develops from the gynoecium, which has a stigma, a style, an ovary containing the ovules, and a gynophore. Externally, the ovary consists of two valves, and their margins lay adjacent to the replum, which is connected to the septum that internally divides the ovary. In this work we describe the role for the zinc-finger transcription factor NO TRANSMITTING TRACT (NTT) in replum development. NTT loss of function leads to reduced replum width and cell number, whereas increased expression promotes replum enlargement. NTT activates the homeobox gene BP, which, together with RPL, is important for replum development. In addition, the NTT protein is able to bind the BP promoter in yeast, and when this binding region is not present, NTT fails to activate BP in the replum. Furthermore, NTT interacts with itself and different proteins involved in fruit development: RPL, STM, FUL, SHP1 and SHP2 in yeast and in planta. Moreover, its genetic interactions provide further evidence about its biological relevance in replum development.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Frutas/citología , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Genes Reporteros , Modelos Biológicos , Mutación , Especificidad de Órganos , Fenotipo , Regiones Promotoras Genéticas/genética , Semillas/citología , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Factores de Transcripción/metabolismo , Dedos de Zinc
11.
Plant Physiol ; 166(3): 1634-45, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25209982

RESUMEN

Rice (Oryza sativa) is the primary food source for more than one-half of the world's population. Because rice cultivation is dependent on water availability, drought during flowering severely affects grain yield. Here, we show that the function of a drought-inducible receptor-like cytoplasmic kinase, named GROWTH UNDER DROUGHT KINASE (GUDK), is required for grain yield under drought and well-watered conditions. Loss-of-function gudk mutant lines exhibit sensitivity to salinity, osmotic stress, and abscisic acid treatment at the seedling stage, and a reduction in photosynthesis and plant biomass under controlled drought stress at the vegetative stage. The gudk mutants interestingly showed a significant reduction in grain yield, both under normal well-watered conditions and under drought stress at the reproductive stage. Phosphoproteome profiling of the mutant followed by in vitro assays identified the transcription factor APETALA2/ETHYLENE RESPONSE FACTOR OsAP37 as a phosphorylation target of GUDK. The involvement of OsAP37 in regulating grain yield under drought through activation of several stress genes was previously shown. Our transactivation assays confirmed that GUDK is required for activation of stress genes by OsAP37. We propose that GUDK mediates drought stress signaling through phosphorylation and activation of OsAP37, resulting in transcriptional activation of stress-regulated genes, which impart tolerance and improve yield under drought. Our study reveals insights around drought stress signaling mediated by receptor-like cytoplasmic kinases, and also identifies a primary regulator of grain yield in rice that offers the opportunity to improve and stabilize rice grain yield under normal and drought stress conditions.


Asunto(s)
Oryza/fisiología , Proteínas de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Germinación , Oryza/genética , Fosforilación , Proteínas de Plantas/genética , Proteínas Quinasas/genética , Plantones/fisiología , Semillas/crecimiento & desarrollo , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo
12.
Plant Physiol ; 162(1): 145-56, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23569107

RESUMEN

Tomato (Solanum lycopersicum) is a model organism for Solanaceae in both molecular and agronomic research. This project utilized Agrobacterium tumefaciens transformation and the transposon-tagging construct Activator (Ac)/Dissociator (Ds)-ATag-Bar_gosGFP to produce activation-tagged and knockout mutants in the processing tomato cultivar M82. The construct carried hygromycin resistance (hyg), green fluorescent protein (GFP), and the transposase (TPase) of maize (Zea mays) Activator major transcript X054214.1 on the stable Ac element, along with a 35S enhancer tetramer and glufosinate herbicide resistance (BAR) on the mobile Ds-ATag element. An in vitro propagation strategy was used to produce a population of 25 T0 plants from a single transformed plant regenerated in tissue culture. A T1 population of 11,000 selfed and cv M82 backcrossed progeny was produced from the functional T0 line. This population was screened using glufosinate herbicide, hygromycin leaf painting, and multiplex polymerase chain reaction (PCR). Insertion sites of transposed Ds-ATag elements were identified through thermal asymmetric interlaced PCR, and resulting product sequences were aligned to the recently published tomato genome. A population of 509 independent, Ds-only transposant lines spanning all 12 tomato chromosomes has been developed. Insertion site analysis demonstrated that more than 80% of these lines harbored Ds insertions conducive to activation tagging. The capacity of the Ds-ATag element to alter transcription was verified by quantitative real-time reverse transcription-PCR in two mutant lines. The transposon-tagged lines have been immortalized in seed stocks and can be accessed through an online database, providing a unique resource for tomato breeding and analysis of gene function in the background of a commercial tomato cultivar.


Asunto(s)
Elementos Transponibles de ADN/genética , Solanum lycopersicum/genética , Transposasas/genética , ADN de Plantas/genética , Bases de Datos de Ácidos Nucleicos , Genoma de Planta/genética , Solanum lycopersicum/fisiología , Mutagénesis Insercional , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/fisiología , Análisis de Secuencia de ADN , Transposasas/metabolismo , Zea mays/genética
13.
Plant Cell Rep ; 33(7): 1203-16, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24728112

RESUMEN

KEY MESSAGE: Diploid strawberry and potato transformed with a transposon tagging construct exhibited either global (strawberry) or local transposition (potato). An activation tagged, compact-sized strawberry mutant overexpressed the gene adjacent to Ds. As major fruit and vegetable crops, respectively, strawberry and potato are among the first horticultural crops with draft genome sequences. To study gene function, we examined transposon-tagged mutant strategies in model populations for both species, Fragaria vesca and Solanum tuberosum Group Phureja, using the same Activation/Dissociation (Ac/Ds) construct. Early somatic transposition during tissue culture occurred at a frequency of 18.5% in strawberry but not in potato transformants. Green fluorescent protein under a monocot promoter was a more reliable selectable marker in strawberry compared to potato. BASTA (gluphosinate herbicide) resistance served as an effective selectable marker for both species (80 and 85% reliable in strawberry and potato, respectively), although the effective concentration differed (0.5% for strawberry and 0.03% for potato). Transposons preferentially reinserted within genes (exons and introns) in both species. Real-time quantitative PCR revealed enhanced gene expression (670 and 298-fold expression compared to wild type in petiole and leaf tissue, respectively) for an activation tagged strawberry mutant with Ds inserted about 0.6 kb upstream from a gene coding for an epidermis-specific secreted glycoprotein EP1. Our data also suggested that endopolyploid (diploid) cells occurring in leaf explants of monoploid potato were the favored targets of T-DNA integration during transformation. Mutants obtained in these studies provide a useful resource for future genetic studies.


Asunto(s)
Elementos Transponibles de ADN , Diploidia , Fragaria/genética , Solanum tuberosum/genética , Agrobacterium/genética , Secuencia de Bases , Productos Agrícolas/genética , Germinación , Datos de Secuencia Molecular , Mutación , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa/métodos , Transformación Genética
14.
Funct Plant Biol ; 512024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38815128

RESUMEN

Rice (Oryza sativa ) faces challenges to yield and quality due to urbanisation, deforestation and climate change, which has exacerbated high night temperature (HNT). This review explores the impacts of HNT on the physiological, molecular and agronomic aspects of rice growth. Rise in minimum temperature threatens a potential 41% reduction in rice yield by 2100. HNT disrupts rice growth stages, causing reduced seed germination, biomass, spikelet sterility and poor grain development. Recent findings indicate a 4.4% yield decline for every 1°C increase beyond 27°C, with japonica ecotypes exhibiting higher sensitivity than indica. We examine the relationships between elevated CO2 , nitrogen regimes and HNT, showing that the complexity of balancing positive CO2 effects on biomass with HNT challenges. Nitrogen enrichment proves crucial during the vegetative stage but causes disruption to reproductive stages, affecting grain yield and starch synthesis. Additionally, we elucidate the impact of HNT on plant respiration, emphasising mitochondrial respiration, photorespiration and antioxidant responses. Genomic techniques, including CRISPR-Cas9, offer potential for manipulating genes for HNT tolerance. Plant hormones and carbohydrate enzymatic activities are explored, revealing their intricate roles in spikelet fertility, grain size and starch metabolism under HNT. Gaps in understanding genetic factors influencing heat tolerance and potential trade-offs associated with hormone applications remain. The importance of interdisciplinary collaboration is needed to provide a holistic approach. Research priorities include the study of regulatory mechanisms, post-anthesis effects, cumulative HNT exposure and the interaction between climate variability and HNT impact to provide a research direction to enhance rice resilience in a changing climate.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Fenómica , Calor/efectos adversos , Estrés Fisiológico , Cambio Climático
15.
Plant Physiol ; 160(2): 846-67, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22837360

RESUMEN

Drought stress affects cereals especially during the reproductive stage. The maize (Zea mays) drought transcriptome was studied using RNA-Seq analysis to compare drought-treated and well-watered fertilized ovary and basal leaf meristem tissue. More drought-responsive genes responded in the ovary compared with the leaf meristem. Gene Ontology enrichment analysis revealed a massive decrease in transcript abundance of cell division and cell cycle genes in the drought-stressed ovary only. Among Gene Ontology categories related to carbohydrate metabolism, changes in starch and Suc metabolism-related genes occurred in the ovary, consistent with a decrease in starch levels, and in Suc transporter function, with no comparable changes occurring in the leaf meristem. Abscisic acid (ABA)-related processes responded positively, but only in the ovaries. Related responses suggested the operation of low glucose sensing in drought-stressed ovaries. The data are discussed in the context of the susceptibility of maize kernel to drought stress leading to embryo abortion and the relative robustness of dividing vegetative tissue taken at the same time from the same plant subjected to the same conditions. Our working hypothesis involves signaling events associated with increased ABA levels, decreased glucose levels, disruption of ABA/sugar signaling, activation of programmed cell death/senescence through repression of a phospholipase C-mediated signaling pathway, and arrest of the cell cycle in the stressed ovary at 1 d after pollination. Increased invertase levels in the stressed leaf meristem, on the other hand, resulted in that tissue maintaining hexose levels at an "unstressed" level, and at lower ABA levels, which was correlated with successful resistance to drought stress.


Asunto(s)
Sequías , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema/metabolismo , Hojas de la Planta/metabolismo , Zea mays/genética , Ácido Abscísico/farmacología , Adaptación Fisiológica , Puntos de Control del Ciclo Celular , Muerte Celular , División Celular , Flores/genética , Flores/fisiología , Genes de Plantas , Glucosa/metabolismo , Meristema/genética , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Sitios de Empalme de ARN , ARN de Planta/genética , Semillas/genética , Semillas/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal , Estrés Fisiológico , Transcriptoma , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo , Zea mays/metabolismo , Zea mays/fisiología
16.
Front Plant Sci ; 14: 1106672, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810402

RESUMEN

Introduction: Light response curves are widely used to quantify phenotypic expression of photosynthesis by measuring a single sample and sequentially altering light intensity within a chamber (sequential method) or by measuring different samples that are each acclimated to a different light level (non-sequential method). Both methods are often conducted in controlled environments to achieve steady-state results, and neither method involves equilibrating the entire plant to the specific light level. Methods: Here, we compare sequential and non-sequential methods in controlled (greenhouse), semi-controlled (plant grown in growth chamber and acclimated to field conditions 2-3 days before measurements), and field environments. We selected seven diverse rice genotypes (five genotypes from the USDA rice minicore collection: 310588, 310723, 311644, 311677, 311795; and 2 additional genotypes: Nagina 22 and Zhe 733) to understand (1) the limitations of different methods, and (2) phenotypic plasticity of photosynthesis in rice grown under different environments. Results: Our results show that the non-sequential method was time-efficient and captured more variability of field conditions than the sequential method, but the model parameters were generally similar between two methods except the maximum photosynthesis rate (Amax). Amax was significantly lower across all genotypes under greenhouse conditions compared to the growth chamber and field conditions consistent with prior work, but surprisingly the apparent quantum yield (α) and the mitochondrial respiration (Rd) were generally not different among growing environments or measurement methods. Discussion: Our results suggest that field conditions are best suited to quantify phenotypic differences across different genotypes and nonsequential method was better at capturing the variability in photosynthesis.

17.
Sci Rep ; 13(1): 4880, 2023 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966148

RESUMEN

Elevated nighttime temperatures resulting from climate change significantly impact the rice crop worldwide. The rice (Oryza sativa L.) plant is highly sensitive to high nighttime temperature (HNT) during grain-filling (reproductive stage). HNT stress negatively affects grain quality traits and has a major impact on the value of the harvested rice crop. In addition, along with grain dimensions determining rice grain market classes, the grain appearance and quality traits determine the rice grain market value. During the last few years, there has been a major concern for rice growers and the rice industry over the prevalence of rice grains opacity and the reduction of grain dimensions affected by HNT stress. Hence, the improvement of heat-stress tolerance to maintain grain quality of the rice crop under HNT stress will bolster future rice value in the market. In this study, 185 F12-recombinant inbred lines (RILs) derived from two US rice cultivars, Cypress (HNT-tolerant) and LaGrue (HNT-sensitive) were screened for the grain quality traits grain length (GL), grain width (GW), and percent chalkiness (%chalk) under control and HNT stress conditions and evaluated to identify the genomic regions associated with the grain quality traits. In total, there were 15 QTLs identified; 6 QTLs represented under control condition explaining 3.33% to 8.27% of the phenotypic variation, with additive effects ranging from - 0.99 to 0.0267 on six chromosomes and 9 QTLs represented under HNT stress elucidating 6.39 to 51.53% of the phenotypic variation, with additive effects ranging from - 8.8 to 0.028 on nine chromosomes for GL, GW, and % chalk. These 15 QTLs were further characterized and scanned for natural genetic variation in a japonica diversity panel (JDP) to identify candidate genes for GL, GW, and %chalk. We found 6160 high impact single nucleotide polymorphisms (SNPs) characterized as such depending on their type, region, functional class, position, and proximity to the gene and/or gene features, and 149 differentially expressed genes (DEGs) in the 51 Mbp genomic region comprising of the 15 QTLs. Out of which, 11 potential candidate genes showed high impact SNP associations. Therefore, the analysis of the mapped QTLs and their genetic dissection in the US grown Japonica rice genotypes at genomic and transcriptomic levels provide deep insights into genetic variation beneficial to rice breeders and geneticists for understanding the mechanisms related to grain quality under heat stress in rice.


Asunto(s)
Oryza , Oryza/genética , Temperatura , Mapeo Cromosómico/métodos , Sitios de Carácter Cuantitativo/genética , Fenotipo , Grano Comestible/genética
18.
Plant Biotechnol J ; 10(4): 453-64, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22284568

RESUMEN

The physiological role of a vacuolar ATPase subunit c1 (SaVHAc1) from a halophyte grass Spartina alterniflora was studied through its expression in rice. The SaVHAc1-expressing plants showed enhanced tolerance to salt stress than the wild-type plants, mainly through adjustments in early stage and preparatory physiological responses. In addition to the increased accumulation of its own transcript, SaVHAc1 expression led to increased accumulation of messages of other native genes in rice, especially those involved in cation transport and ABA signalling. The SaVHAc1-expressing plants maintained higher relative water content under salt stress through early stage closure of the leaf stoma and reduced stomata density. The increased K(+) /Na(+) ratio and other cations established an ion homoeostasis in SaVHAc1-expressing plants to protect the cytosol from toxic Na(+) and thereby maintained higher chlorophyll retention than the WT plants under salt stress. Besides, the role of SaVHAc1 in cell wall expansion and maintenance of net photosynthesis was implicated by comparatively higher root and leaf growth and yield of rice expressing SaVHAc1 over WT under salt stress. The study indicated that the genes contributing toward natural variation in grass halophytes could be effectively manipulated for improving salt tolerance of field crops within related taxa.


Asunto(s)
Oryza/fisiología , Poaceae/enzimología , Poaceae/genética , Tolerancia a la Sal/genética , Plantas Tolerantes a la Sal/enzimología , Estrés Fisiológico/genética , ATPasas de Translocación de Protón Vacuolares/genética , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Patrón de Herencia/efectos de los fármacos , Patrón de Herencia/genética , Oryza/genética , Oryza/crecimiento & desarrollo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/efectos de los fármacos , Brotes de la Planta/anatomía & histología , Brotes de la Planta/efectos de los fármacos , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Estomas de Plantas/ultraestructura , Plantas Modificadas Genéticamente , Poaceae/efectos de los fármacos , Potasio/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tolerancia a la Sal/efectos de los fármacos , Plantas Tolerantes a la Sal/efectos de los fármacos , Plantas Tolerantes a la Sal/genética , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Análisis de Secuencia de ADN , Espectrofotometría Atómica , Estrés Fisiológico/efectos de los fármacos , ATPasas de Translocación de Protón Vacuolares/metabolismo , Agua
19.
Plant Physiol ; 155(2): 916-31, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21205614

RESUMEN

Cellulose from plant biomass is the largest renewable energy resource of carbon fixed from the atmosphere, which can be converted into fermentable sugars for production into ethanol. However, the cellulose present as lignocellulosic biomass is embedded in a hemicellulose and lignin matrix from which it needs to be extracted for efficient processing. Here, we show that expression of an Arabidopsis (Arabidopsis thaliana) transcription factor, SHINE (SHN), in rice (Oryza sativa), a model for the grasses, causes a 34% increase in cellulose and a 45% reduction in lignin content. The rice AtSHN lines also exhibit an altered lignin composition correlated with improved digestibility, with no compromise in plant strength and performance. Using a detailed systems-level analysis of global gene expression in rice, we reveal the SHN regulatory network coordinating down-regulation of lignin biosynthesis and up-regulation of cellulose and other cell wall biosynthesis pathway genes. The results thus support the development of nonfood crops and crop wastes with increased cellulose and low lignin with good agronomic performance that could improve the economic viability of lignocellulosic crop utilization for biofuels.


Asunto(s)
Pared Celular/metabolismo , Celulosa/biosíntesis , Lignina/biosíntesis , Oryza/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genotipo , Oryza/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , ARN de Planta/genética , Factores de Transcripción/genética , Regulación hacia Arriba
20.
iScience ; 25(12): 105627, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36465114

RESUMEN

Evolution has long been considered to be a conservative process in which new genes arise from pre-existing genes through gene duplication, domain shuffling, horizontal transfer, overprinting, retrotransposition, etc. However, this view is changing as new genes originating from non-genic sequences are discovered in different organisms. Still, rather limited functional information is available. Here, we have identified TWISTED1 (TWT1), a possible de novo-originated protein-coding gene that modifies microtubule arrangement and causes helicoidal growth in Arabidopsis thaliana when its expression is increased. Interestingly, even though TWT1 is a likely recent gene, the lack of TWT1 function affects A. thaliana development. TWT1 seems to have originated from a non-genic sequence. If so, it would be one of the few examples to date of how during evolution de novo genes are integrated into developmental cellular and organismal processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA