Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 22(3): 347-357, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33432229

RESUMEN

Activated Vγ9Vδ2 (γδ2) T lymphocytes that sense parasite-produced phosphoantigens are expanded in Plasmodium falciparum-infected patients. Although previous studies suggested that γδ2 T cells help control erythrocytic malaria, whether γδ2 T cells recognize infected red blood cells (iRBCs) was uncertain. Here we show that iRBCs stained for the phosphoantigen sensor butyrophilin 3A1 (BTN3A1). γδ2 T cells formed immune synapses and lysed iRBCs in a contact, phosphoantigen, BTN3A1 and degranulation-dependent manner, killing intracellular parasites. Granulysin released into the synapse lysed iRBCs and delivered death-inducing granzymes to the parasite. All intra-erythrocytic parasites were susceptible, but schizonts were most sensitive. A second protective γδ2 T cell mechanism was identified. In the presence of patient serum, γδ2 T cells phagocytosed and degraded opsonized iRBCs in a CD16-dependent manner, decreasing parasite multiplication. Thus, γδ2 T cells have two ways to control blood-stage malaria-γδ T cell antigen receptor (TCR)-mediated degranulation and phagocytosis of antibody-coated iRBCs.


Asunto(s)
Antígenos de Protozoos/inmunología , Citotoxicidad Inmunológica , Eritrocitos/inmunología , Linfocitos Intraepiteliales/inmunología , Activación de Linfocitos , Malaria Falciparum/inmunología , Fagocitosis , Plasmodium falciparum/microbiología , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Antígenos de Protozoos/sangre , Boston , Brasil , Butirofilinas/metabolismo , Células Cultivadas , Eritrocitos/metabolismo , Eritrocitos/parasitología , Femenino , Granzimas/metabolismo , Interacciones Huésped-Parásitos , Humanos , Sinapsis Inmunológicas/metabolismo , Sinapsis Inmunológicas/parasitología , Linfocitos Intraepiteliales/metabolismo , Linfocitos Intraepiteliales/parasitología , Malaria Falciparum/sangre , Malaria Falciparum/parasitología , Masculino , Plasmodium falciparum/crecimiento & desarrollo
2.
Malar J ; 22(1): 306, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817240

RESUMEN

BACKGROUND: Imperfect adherence is a major barrier to effective primaquine radical cure of Plasmodium vivax. This study investigated the effect of reduced adherence on the risk of P. vivax recurrence. METHODS: Efficacy studies of patients with uncomplicated P. vivax malaria, including a treatment arm with daily primaquine, published between January 1999 and March 2020 were identified. Individual patient data from eligible studies were pooled using standardized methodology. Adherence to primaquine was inferred from i) the percentage of supervised doses and ii) the total mg/kg dose received compared to the target total mg/kg dose per protocol. The effect of adherence to primaquine on the incidence of P. vivax recurrence between days 7 and 90 was investigated by Cox regression analysis. RESULTS: Of 82 eligible studies, 32 were available including 6917 patients from 18 countries. For adherence assessed by percentage of supervised primaquine, 2790 patients (40.3%) had poor adherence (≤ 50%) and 4127 (59.7%) had complete adherence. The risk of recurrence by day 90 was 14.0% [95% confidence interval: 12.1-16.1] in patients with poor adherence compared to 5.8% [5.0-6.7] following full adherence; p = 0.014. After controlling for age, sex, baseline parasitaemia, and total primaquine dose per protocol, the rate of the first recurrence was higher following poor adherence compared to patients with full adherence (adjusted hazard ratio (AHR) = 2.3 [1.8-2.9]). When adherence was quantified by total mg/kg dose received among 3706 patients, 347 (9.4%) had poor adherence, 88 (2.4%) had moderate adherence, and 3271 (88.2%) had complete adherence to treatment. The risks of recurrence by day 90 were 8.2% [4.3-15.2] in patients with poor adherence and 4.9% [4.1-5.8] in patients with full adherence; p < 0.001. CONCLUSION: Reduced adherence, including less supervision, increases the risk of vivax recurrence.


Asunto(s)
Antimaláricos , Antagonistas del Ácido Fólico , Malaria Vivax , Humanos , Primaquina/efectos adversos , Antimaláricos/farmacología , Plasmodium vivax , Recurrencia , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/prevención & control , Malaria Vivax/complicaciones , Antagonistas del Ácido Fólico/farmacología
3.
J Med Virol ; 94(7): 3410-3415, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35233783

RESUMEN

Through active surveillance and contact tracing from outpatients, we aimed to identify and characterize SARS-CoV-2 variants circulating in Porto Velho-Rondônia, a city in the Brazilian Amazon. As part of a prospective cohort, we gathered information from 2,506 individuals among COVID-19 patients and household contacts. Epidemiological data, nasopharyngeal swabs, and blood samples were collected from all participants. Nasopharyngeal swabs were tested for antigen rapid diagnostic test and reverse transcription-polymerase chain reaction (RT-PCR) followed by genomic sequencing. Blood samples underwent ELISA testing for IgA, IgG, and IgM antibody levels. From 757 specimens sequenced, three were identified as Mu variant, none of the individuals carrying this variant had a travel history in the previous 15 days before diagnosis. One case was asymptomatic and two presented mild symptoms. Two infected individuals from different households caring viruses with additional amino acid substitutions ORF7a P45L and ORF1a T1055A compared to the Mu virus reference sequence. One patient presented IgG levels. Our results highlight that genomic surveillance for SARS-CoV-2 variants can assist in detecting the emergency of SARS-CoV-2 variants in the community, before its identification in other parts of the country.


Asunto(s)
COVID-19 , SARS-CoV-2 , Brasil/epidemiología , COVID-19/diagnóstico , COVID-19/epidemiología , Humanos , Inmunoglobulina G , Estudios Prospectivos , SARS-CoV-2/genética , Espera Vigilante
4.
Pharmacogenet Genomics ; 30(7): 161-165, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32433338

RESUMEN

Plasmodium vivax has the largest geographic range of human malaria species and is challenging to manage and eradicate due to its ability to establish a dormant liver stage, the hypnozoite, which can reactivate leading to relapse. Until recently, the only treatment approved to kill hypnozoites was the 8-aminoquinoline, primaquine, requiring daily treatment for 14 days. Tafenoquine, an 8-aminoquinoline single-dose treatment with activity against P. vivax hypnozoites, has recently been approved by the US Food and Drug Administration and Australian Therapeutic Goods Administration for the radical cure of P. vivax malaria in patients 16 years and older. We conducted an exploratory pharmacogenetic analysis (GSK Study 208099) to assess the role of host genome-wide variation on tafenoquine efficacy in patients with P. vivax malaria using data from three GSK clinical trials, GATHER and DETECTIVE Part 1 and Part 2. Recurrence-free efficacy at 6 and 4 months and time to recurrence up to 6 months postdosing were analyzed in 438 P. vivax malaria patients treated with tafenoquine. Among the approximately 10.6 million host genetic variants analyzed, two signals reached genome-wide significance (P value ≤ 5 × 10). rs62103056, and variants in a chromosome 12 intergenic region, were associated with recurrence-free efficacy at 6 and 4 months, respectively. Neither of the signals has an obvious biological rationale and would need replication in an independent population. This is the first genome-wide association study to evaluate genetic influence on response to tafenoquine in P. vivax malaria.


Asunto(s)
Aminoquinolinas/administración & dosificación , Antimaláricos/administración & dosificación , Cromosomas Humanos Par 12/genética , Malaria Vivax/tratamiento farmacológico , Polimorfismo de Nucleótido Simple , Adulto , Aminoquinolinas/farmacología , Antimaláricos/farmacología , Ensayos Clínicos como Asunto , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Malaria Vivax/genética , Masculino , Persona de Mediana Edad , Pruebas de Farmacogenómica , Estudios Retrospectivos , Resultado del Tratamiento , Adulto Joven
5.
PLoS Med ; 16(10): e1002928, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31584960

RESUMEN

BACKGROUND: Artemisinin-based combination therapy (ACT) is recommended for uncomplicated Plasmodium vivax malaria in areas of emerging chloroquine resistance. We undertook a systematic review and individual patient data meta-analysis to compare the efficacies of dihydroartemisinin-piperaquine (DP) and artemether-lumefantrine (AL) with or without primaquine (PQ) on the risk of recurrent P. vivax. METHODS AND FINDINGS: Clinical efficacy studies of uncomplicated P. vivax treated with DP or AL and published between January 1, 2000, and January 31, 2018, were identified by conducting a systematic review registered with the International Prospective Register of Systematic Reviews (PROSPERO): CRD42016053310. Investigators of eligible studies were invited to contribute individual patient data that were pooled using standardised methodology. The effect of mg/kg dose of piperaquine/lumefantrine, ACT administered, and PQ on the rate of P. vivax recurrence between days 7 and 42 after starting treatment were investigated by Cox regression analyses according to an a priori analysis plan. Secondary outcomes were the risk of recurrence assessed on days 28 and 63. Nineteen studies enrolling 2,017 patients were included in the analysis. The risk of recurrent P. vivax at day 42 was significantly higher in the 384 patients treated with AL alone (44.0%, 95% confidence interval [CI] 38.7-49.8) compared with the 812 patients treated with DP alone (9.3%, 95% CI 7.1-12.2): adjusted hazard ratio (AHR) 12.63 (95% CI 6.40-24.92), p < 0.001. The rates of recurrence assessed at days 42 and 63 were associated inversely with the dose of piperaquine: AHRs (95% CI) for every 5-mg/kg increase 0.63 (0.48-0.84), p = 0.0013 and 0.83 (0.73-0.94), p = 0.0033, respectively. The dose of lumefantrine was not significantly associated with the rate of recurrence (1.07 for every 5-mg/kg increase, 95% CI 0.99-1.16, p = 0.0869). In a post hoc analysis, in patients with symptomatic recurrence after AL, the mean haemoglobin increased 0.13 g/dL (95% CI 0.01-0.26) for every 5 days that recurrence was delayed, p = 0.0407. Coadministration of PQ reduced substantially the rate of recurrence assessed at day 42 after AL (AHR = 0.20, 95% CI 0.10-0.41, p < 0.001) and at day 63 after DP (AHR = 0.08, 95% CI 0.01-0.70, p = 0.0233). Results were limited by follow-up of patients to 63 days or less and nonrandomised treatment groups. CONCLUSIONS: In this study, we observed the risk of P. vivax recurrence at day 42 to be significantly lower following treatment with DP compared with AL, reflecting the longer period of post-treatment prophylaxis; this risk was reduced substantially by coadministration with PQ. We found that delaying P. vivax recurrence was associated with a small but significant improvement in haemoglobin. These results highlight the benefits of PQ radical cure and also the provision of blood-stage antimalarial agents with prolonged post-treatment prophylaxis.


Asunto(s)
Antimaláricos/administración & dosificación , Combinación Arteméter y Lumefantrina/administración & dosificación , Artemisininas/administración & dosificación , Malaria Vivax/tratamiento farmacológico , Primaquina/administración & dosificación , Quinolinas/administración & dosificación , Humanos , Malaria Vivax/diagnóstico , Plasmodium vivax , Recurrencia , Riesgo , Resultado del Tratamiento
6.
BMC Med ; 17(1): 151, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31366382

RESUMEN

BACKGROUND: Malaria causes a reduction in haemoglobin that is compounded by primaquine, particularly in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. The aim of this study was to determine the relative contributions to red cell loss of malaria and primaquine in patients with uncomplicated Plasmodium vivax. METHODS: A systematic review identified P. vivax efficacy studies of chloroquine with or without primaquine published between January 2000 and March 2017. Individual patient data were pooled using standardised methodology, and the haematological response versus time was quantified using a multivariable linear mixed effects model with non-linear terms for time. Mean differences in haemoglobin between treatment groups at day of nadir and day 42 were estimated from this model. RESULTS: In total, 3421 patients from 29 studies were included: 1692 (49.5%) with normal G6PD status, 1701 (49.7%) with unknown status and 28 (0.8%) deficient or borderline individuals. Of 1975 patients treated with chloroquine alone, the mean haemoglobin fell from 12.22 g/dL [95% CI 11.93, 12.50] on day 0 to a nadir of 11.64 g/dL [11.36, 11.93] on day 2, before rising to 12.88 g/dL [12.60, 13.17] on day 42. In comparison to chloroquine alone, the mean haemoglobin in 1446 patients treated with chloroquine plus primaquine was - 0.13 g/dL [- 0.27, 0.01] lower at day of nadir (p = 0.072), but 0.49 g/dL [0.28, 0.69] higher by day 42 (p < 0.001). On day 42, patients with recurrent parasitaemia had a mean haemoglobin concentration - 0.72 g/dL [- 0.90, - 0.54] lower than patients without recurrence (p < 0.001). Seven days after starting primaquine, G6PD normal patients had a 0.3% (1/389) risk of clinically significant haemolysis (fall in haemoglobin > 25% to < 7 g/dL) and a 1% (4/389) risk of a fall in haemoglobin > 5 g/dL. CONCLUSIONS: Primaquine has the potential to reduce malaria-related anaemia at day 42 and beyond by preventing recurrent parasitaemia. Its widespread implementation will require accurate diagnosis of G6PD deficiency to reduce the risk of drug-induced haemolysis in vulnerable individuals. TRIAL REGISTRATION: This trial was registered with PROSPERO: CRD42016053312. The date of the first registration was 23 December 2016.


Asunto(s)
Anemia Hemolítica/etiología , Antimaláricos/efectos adversos , Malaria Vivax/complicaciones , Malaria Vivax/tratamiento farmacológico , Primaquina/efectos adversos , Adulto , Cloroquina/uso terapéutico , Femenino , Deficiencia de Glucosafosfato Deshidrogenasa/complicaciones , Deficiencia de Glucosafosfato Deshidrogenasa/diagnóstico , Hemólisis/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Plasmodium vivax/efectos de los fármacos
7.
J Infect Dis ; 218(8): 1314-1323, 2018 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-29800313

RESUMEN

The balance between pro- and antiinflammatory mechanisms is essential to limit immune-mediated pathology, and CD4+ forkhead box P3 (Foxp3+) regulatory T cells (Treg) play an important role in this process. The expression of inhibitory receptors regulates cytokine production by Plasmodium vivax-specific T cells. Our goal was to assess the induction of programmed death-1 (PD-1) and cytotoxic T-lymphocyte antigen (CTLA-4) on Treg during malaria and to evaluate their function. We found that P. vivax infection triggered an increase in circulating Treg and their expression of CTLA-4 and PD-1. Functional analysis demonstrated that Treg from malaria patients had impaired suppressive ability and PD-1+Treg displayed lower levels of Foxp3 and Helios, but had higher frequencies of T-box transcription factor+ and interferon-gamma+ cells than PD-1-Treg. Thus malaria infection alters the function of circulating Treg by triggering increased expression of PD-1 on Treg that is associated with decreased regulatory function and increased proinflammatory characteristics.


Asunto(s)
Malaria Vivax/inmunología , Malaria Vivax/parasitología , Linfocitos T Reguladores/fisiología , Adulto , Proliferación Celular , Citocinas/genética , Citocinas/metabolismo , Femenino , Regulación de la Expresión Génica/inmunología , Humanos , Inmunofenotipificación , Masculino , Persona de Mediana Edad , Plasmodium vivax , Reticulocitos/parasitología , Reticulocitos/fisiología , Adulto Joven
8.
PLoS Pathog ; 10(9): e1004393, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25233271

RESUMEN

Infection with Plasmodium vivax results in strong activation of monocytes, which are important components of both the systemic inflammatory response and parasite control. The overall goal of this study was to define the role of monocytes during P. vivax malaria. Here, we demonstrate that P. vivax-infected patients display significant increase in circulating monocytes, which were defined as CD14(+)CD16- (classical), CD14(+)CD16(+) (inflammatory), and CD14loCD16(+) (patrolling) cells. While the classical and inflammatory monocytes were found to be the primary source of pro-inflammatory cytokines, the CD16(+) cells, in particular the CD14(+)CD16(+) monocytes, expressed the highest levels of activation markers, which included chemokine receptors and adhesion molecules. Morphologically, CD14(+) were distinguished from CD14lo monocytes by displaying larger and more active mitochondria. CD14(+)CD16(+) monocytes were more efficient in phagocytizing P. vivax-infected reticulocytes, which induced them to produce high levels of intracellular TNF-α and reactive oxygen species. Importantly, antibodies specific for ICAM-1, PECAM-1 or LFA-1 efficiently blocked the phagocytosis of infected reticulocytes by monocytes. Hence, our results provide key information on the mechanism by which CD14(+)CD16(+) cells control parasite burden, supporting the hypothesis that they play a role in resistance to P. vivax infection.


Asunto(s)
Eritrocitos/inmunología , Inflamación/inmunología , Receptores de Lipopolisacáridos/inmunología , Malaria Vivax/inmunología , Mitocondrias/inmunología , Monocitos/inmunología , Plasmodium vivax/inmunología , Receptores de IgG/inmunología , Enfermedad Aguda , Adolescente , Adulto , Anciano , Femenino , Citometría de Flujo , Humanos , Inmunofenotipificación , Malaria Vivax/metabolismo , Malaria Vivax/parasitología , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Mitocondrias/patología , Monocitos/metabolismo , Monocitos/parasitología , Fagocitosis , Especies Reactivas de Oxígeno/metabolismo , Adulto Joven
9.
J Infect Dis ; 212(12): 1999-2010, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26019284

RESUMEN

The function and regulation of the immune response triggered during malaria is complex and poorly understood, and there is a particular paucity of studies conducted in humans infected with Plasmodium vivax. While it has been proposed that T-cell-effector responses are crucial for protection against blood-stage malaria in mice, the mechanisms behind this in humans remain poorly understood. Experimental models of malaria have shown that the regulatory molecules, cytotoxic T-lymphocyte attenuator-4 (CTLA-4), lymphocyte activation gene-3 (LAG-3), and programmed death-1 (PD-1) are involved in the functional impairment of T cells during infection. Our goal was to define the role of these molecules during P. vivax malaria. We demonstrate that infection triggers the expression of regulatory molecules on T cells. The pattern of expression differs in CD4(+) and CD8(+) T cells. Higher frequencies of CD4(+) express more than 1 regulatory molecule compared to CD8(+) T cells. Moreover, lower proportions of CD4(+) T cells coexpress regulatory molecules, but are still able to proliferate. Importantly, simultaneously blockade of the CLTA-4, PD-1, and T-cell immunoglobulin and mucin-3 signaling restores the cytokine production by antigen-specific cells. These data support the hypothesis that upregulation of inhibitory receptors on T cells during P. vivax malaria impairs parasite-specific T-cell effector function.


Asunto(s)
Citocinas/antagonistas & inhibidores , Interacciones Huésped-Patógeno , Tolerancia Inmunológica , Malaria Vivax/inmunología , Plasmodium vivax/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Adulto , Femenino , Humanos , Malaria Vivax/parasitología , Masculino , Persona de Mediana Edad , Adulto Joven
10.
Malar J ; 14: 5, 2015 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-25559491

RESUMEN

BACKGROUND: Reduction in the number of circulating blood lymphocytes (lymphocytopaenia) has been reported during clinical episodes of malaria and is normalized after treatment with anti-malaria drugs. While this phenomenon is well established in malaria infection, the underlying mechanisms are still not fully elucidated. In the present study, the occurrence of apoptosis and its pathways in CD4+ T cells was investigated in naturally Plasmodium vivax-infected individuals from a Brazilian endemic area (Porto Velho - RO). METHODS: Blood samples were collected from P. vivax-infected individuals and healthy donors. The apoptosis was characterized by cell staining with Annexin V/FITC and propidium iodide and the apoptosis-associated gene expression profile was carried out using RT2 Profiler PCR Array-Human Apoptosis. The plasma TNF level was determined by ELISA. The unpaired t-test or Mann-Whitney test was applied according to the data distribution. RESULTS: Plasmodium vivax-infected individuals present low number of leukocytes and lymphocytes with a higher percentage of CD4+ T cells in early and/or late apoptosis. Increased gene expression was observed for TNFRSF1B and Bid, associated with a reduction of Bcl-2, in individuals with P. vivax malaria. Furthermore, these individuals showed increased plasma levels of TNF compared to malaria-naive donors. CONCLUSIONS: The results of the present study suggest that P. vivax infection induces apoptosis of CD4+ T cells mediated by two types of signaling: by activation of the TNFR1 death receptor (extrinsic pathway), which is amplified by Bid, and by decreased expression of the anti-apoptotic protein Bcl-2 (intrinsic pathway). The T lymphocytes apoptosis could reflect a strategy of immune evasion triggered by the parasite, enabling their persistence but also limiting the occurrence of immunopathology.


Asunto(s)
Apoptosis , Linfocitos T CD4-Positivos/fisiología , Interacciones Huésped-Patógeno , Malaria Vivax/inmunología , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Receptores Tipo I de Factores de Necrosis Tumoral/biosíntesis , Adulto , Brasil , Técnicas Citológicas , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Transducción de Señal , Adulto Joven
11.
Malar J ; 13: 73, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24581308

RESUMEN

BACKGROUND: Chloroquine (CQ), a cost effective antimalarial drug with a relatively good safety profile and therapeutic index, is no longer used by itself to treat patients with Plasmodium falciparum due to CQ-resistant strains. P. vivax, representing over 90% of malaria cases in Brazil, despite reported resistance, is treated with CQ as well as with primaquine to block malaria transmission and avoid late P. vivax malaria relapses. Resistance to CQ and other antimalarial drugs influences malaria control, thus monitoring resistance phenotype by parasite genotyping is helpful in endemic areas. METHODS: A total of 47 P. vivax and nine P. falciparum fresh isolates were genetically characterized and tested for CQ, mefloquine (MQ) and artesunate (ART) susceptibility in vitro. The genes mdr1 and pfcrt, likely related to CQ resistance, were analyzed in all isolates. Drug susceptibility was determined using short-term parasite cultures of ring stages for 48 to 72 hour and thick blood smears counts. Each parasite isolate was tested with the antimalarials to measure the geometric mean of 50% inhibitory concentration. RESULTS: The low numbers of P. falciparum isolates reflect the species prevalence in Brazil; most displayed low sensitivity to CQ (IC50 70 nM). However, CQ resistance was rare among P. vivax isolates (IC50 of 32 nM). The majority of P. vivax and P. falciparum isolates were sensitive to ART and MQ. One hundred percent of P. falciparum isolates carried non-synonymous mutations in the pfmdr1 gene in codons 184, 1042 and 1246, 84% in codons 1034 and none in codon 86, a well-known resistance mutation. For the pfcrt gene, mutations were observed in codons 72 and 76 in all P. falciparum isolates. One P. falciparum isolate from Angola, Africa, showing sensitivity to the antimalarials, presented no mutations. In P. vivax, mutations of pvmdr1 and the multidrug resistance gene 1 marker at codon F976 were absent. CONCLUSION: All P. falciparum Brazilian isolates showed CQ resistance and presented non-synonymous mutations in pfmdr1 and pfcrt. CQ resistant genotypes were not present among P. vivax isolates and the IC50 values were low in all samples of the Brazilian West Amazon.


Asunto(s)
Antimaláricos/farmacología , ADN Protozoario/genética , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Plasmodium vivax/efectos de los fármacos , Plasmodium vivax/genética , Adulto , Artemisininas/farmacología , Artesunato , Brasil , Cloroquina/farmacología , ADN Protozoario/química , Resistencia a Medicamentos , Femenino , Genotipo , Humanos , Concentración 50 Inhibidora , Malaria/parasitología , Masculino , Mefloquina/farmacología , Proteínas de Transporte de Membrana/genética , Persona de Mediana Edad , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Mutación Missense , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/aislamiento & purificación , Plasmodium vivax/aislamiento & purificación , Proteínas Protozoarias/genética
12.
Microbiol Spectr ; 12(3): e0162923, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38323826

RESUMEN

Oropouche virus (OROV) is characterized as a re-emerging arbovirus of great concern for public health, being responsible for several outbreaks of acute fever identified in Latin American countries, registering more than half a million reported cases. The incidence of reports of this virus is intrinsically favored by environmental conditions, in which such characteristics are related to the increase and distribution of the vector population to areas of human traffic. Moreover, there is a problem regarding the lack of diagnosis in Brazil that aggregates the success of the etiologic agent. Thus, by means of molecular techniques, we identified 27 positive cases of the OROV circulating in border locations in western Amazon, with 44.44% (12/27) of the cohort characterized as infected individuals with reported symptoms, mainly ranging from fever, myalgia, and back pain. Among the positive samples, it was possible to obtain a total of 48.14% (13/27) samples to analyze the S and M segments of Oropouche, which showed similarities among the Brazilian sequences. Thus, it was possible to verify the circulation of the OROV in Rondonia and border areas, in which the tracking of neglected arboviruses is necessary for the genomic surveillance of emerging and re-emerging viruses.IMPORTANCEThe western Amazon region is known for outbreaks of acute febrile illnesses, to which the lack of specific diagnostics for different pathogens hinders the management of patients in healthcare units. The Oropouche virus has already been recorded in the region in the 1990s. However, this is the first study, after this record, to perform the detection of individuals with acute febrile illness using a screening test to exclude Zika, dengue, and chikungunya, confirmed by sequencing the circulation of the virus in the state of Rondonia and border areas. We emphasize the importance of including diagnostics for viruses such as Oropouche, which suffers underreporting for years and is related to seasonal periods in Western Amazon locations, a factor that has a direct influence on public health in the region. In addition, we emphasize the importance of genomic surveillance in the elucidation of outbreaks that affect the resident population of these locations.


Asunto(s)
Orthobunyavirus , Infección por el Virus Zika , Virus Zika , Humanos , Orthobunyavirus/genética , Brasil/epidemiología , Fiebre , Brotes de Enfermedades
13.
Lancet Infect Dis ; 24(2): 172-183, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37748496

RESUMEN

BACKGROUND: Primaquine is used to eliminate Plasmodium vivax hypnozoites, but its optimal dosing regimen remains unclear. We undertook a systematic review and individual patient data meta-analysis to investigate the efficacy and tolerability of different primaquine dosing regimens to prevent P vivax recurrence. METHODS: For this systematic review and individual patient data meta-analysis, we searched MEDLINE, Web of Science, Embase, and Cochrane Central for prospective clinical studies of uncomplicated P vivax from endemic countries published between Jan 1, 2000, and June 8, 2023. We included studies if they had active follow-up of at least 28 days, and if they included a treatment group with daily primaquine given over multiple days, where primaquine was commenced within 7 days of schizontocidal treatment and was given alone or coadministered with chloroquine or one of four artemisinin-based combination therapies (ie, artemether-lumefantrine, artesunate-mefloquine, artesunate-amodiaquine, or dihydroartemisinin-piperaquine). We excluded studies if they were on prevention, prophylaxis, or patients with severe malaria, or if data were extracted retrospectively from medical records outside of a planned trial. For the meta-analysis, we contacted the investigators of eligible trials to request individual patient data and we then pooled data that were made available by Aug 23, 2021. We assessed the effects of total dose and duration of primaquine regimens on the rate of first P vivax recurrence between day 7 and day 180 by Cox's proportional hazards regression (efficacy analysis). The effect of primaquine daily dose on gastrointestinal symptoms on days 5-7 was assessed by modified Poisson regression (tolerability analysis). The study was registered with PROSPERO, CRD42019154470. FINDINGS: Of 226 identified studies, 23 studies with patient-level data from 6879 patients from 16 countries were included in the efficacy analysis. At day 180, the risk of recurrence was 51·0% (95% CI 48·2-53·9) in 1470 patients treated without primaquine, 19·3% (16·9-21·9) in 2569 patients treated with a low total dose of primaquine (approximately 3·5 mg/kg), and 8·1% (7·0-9·4) in 2811 patients treated with a high total dose of primaquine (approximately 7 mg/kg), regardless of primaquine treatment duration. Compared with treatment without primaquine, the rate of P vivax recurrence was lower after treatment with low-dose primaquine (adjusted hazard ratio 0·21, 95% CI 0·17-0·27; p<0·0001) and high-dose primaquine (0·10, 0·08-0·12; p<0·0001). High-dose primaquine had greater efficacy than low-dose primaquine in regions with high and low relapse periodicity (ie, the time from initial infection to vivax relapse). 16 studies with patient-level data from 5609 patients from ten countries were included in the tolerability analysis. Gastrointestinal symptoms on days 5-7 were reported by 4·0% (95% CI 0·0-8·7) of 893 patients treated without primaquine, 6·2% (0·5-12·0) of 737 patients treated with a low daily dose of primaquine (approximately 0·25 mg/kg per day), 5·9% (1·8-10·1) of 1123 patients treated with an intermediate daily dose (approximately 0·5 mg/kg per day) and 10·9% (5·7-16·1) of 1178 patients treated with a high daily dose (approximately 1 mg/kg per day). 20 of 23 studies included in the efficacy analysis and 15 of 16 in the tolerability analysis had a low or unclear risk of bias. INTERPRETATION: Increasing the total dose of primaquine from 3·5 mg/kg to 7 mg/kg can reduce P vivax recurrences by more than 50% in most endemic regions, with a small associated increase in gastrointestinal symptoms. FUNDING: Australian National Health and Medical Research Council, Bill & Melinda Gates Foundation, and Medicines for Malaria Venture.


Asunto(s)
Antimaláricos , Malaria Vivax , Malaria , Humanos , Primaquina/uso terapéutico , Antimaláricos/efectos adversos , Plasmodium vivax , Artesunato/uso terapéutico , Estudios Prospectivos , Estudios Retrospectivos , Arteméter/farmacología , Arteméter/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Australia , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/prevención & control , Malaria Vivax/epidemiología , Malaria/tratamiento farmacológico , Recurrencia
14.
PLoS Negl Trop Dis ; 17(4): e0011229, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37027391

RESUMEN

Plasmodium vivax is a major challenge for malaria control due to its wide geographic distribution, high frequency of submicroscopic infections, and ability to induce relapses due to the latent forms present in the liver (hypnozoites). Deepening our knowledge of parasite biology and its molecular components is key to develop new tools for malaria control and elimination. This study aims to investigate and characterize a P. vivax protein (PvVir14) for its role in parasite biology and its interactions with the immune system. We collected sera or plasma from P.vivax-infected subjects in Brazil (n = 121) and Cambodia (n = 55), and from P. falciparum-infected subjects in Mali (n = 28), to assess antibody recognition of PvVir14. Circulating antibodies against PvVir14 appeared in 61% and 34.5% of subjects from Brazil and Cambodia, respectively, versus none (0%) of the P. falciparum-infected subjects from Mali who have no exposure to P. vivax. IgG1 and IgG3 most frequently contributed to anti-PvVir14 responses. PvVir14 antibody levels correlated with those against other well-characterized sporozoite/liver (PvCSP) and blood stage (PvDBP-RII) antigens, which were recognized by 7.6% and 42% of Brazilians, respectively. Concerning the cellular immune profiling of Brazilian subjects, PvVir14 seroreactive individuals displayed significantly higher levels of circulating atypical (CD21- CD27-) B cells, raising the possibility that atypical B cells may be contribute to the PvVir14 antibody response. When analyzed at a single-cell level, the B cell receptor gene hIGHV3-23 was only seen in subjects with active P.vivax infection where it comprised 20% of V gene usage. Among T cells, CD4+ and CD8+ levels differed (lower and higher, respectively) between subjects with versus without antibodies to PvVir14, while NKT cell levels were higher in those without antibodies. Specific B cell subsets, anti-PvVir14 circulating antibodies, and NKT cell levels declined after treatment of P. vivax. This study provides the immunological characterization of PvVir14, a unique P. vivax protein, and possible association with acute host's immune responses, providing new information of specific host-parasite interaction. Trial registration: TrialClinicalTrials.gov Identifier: NCT00663546 & ClinicalTrials.gov NCT02334462.


Asunto(s)
Malaria Falciparum , Malaria Vivax , Humanos , Plasmodium vivax/genética , Proteínas Protozoarias/genética , Antígenos de Protozoos , Plasmodium falciparum , Anticuerpos Antiprotozoarios , Malaria Vivax/parasitología , Malaria Falciparum/epidemiología , Brasil/epidemiología , Familia , Inmunoglobulina G , Malí/epidemiología
15.
PLoS Negl Trop Dis ; 17(6): e0011425, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37327209

RESUMEN

Malaria is caused by parasite of the genus Plasmodium and is still one of the most important infectious diseases in the world. Several biological characteristics of Plasmodium vivax contribute to the resilience of this species, including early gametocyte production, both of which lead to efficient malaria transmission to mosquitoes. This study evaluated the impact of currently used drugs on the transmission of P. vivax. Participants received one of the following treatments for malaria: i) chloroquine [10 mg/kg on day 1 and 7.5 mg/kg on day 2 and 3] co-administered with Primaquine [0.5 mg/kg/day for 7 days]; ii) Chloroquine [10 mg/kg on day 1 and 7.5 mg/kg on day 2 and 3] co-administered with one-dose of Tafenoquine [300 mg on day 1]; and iii) Artesunate and Mefloquine [100 mg and 200 mg on day 1, 2 and 3] co-administered with Primaquine [0.5 mg/kg/day for 14 days]. Patient blood was collected before treatment and 4 h, 24 h, 48 h and 72 h after treatment. The blood was used to perform a direct membrane feeding assay (DMFA) using Anopheles darlingi mosquitoes. The results showed 100% inhibition of the mosquito infection after 4 h using ASMQ+PQ, after 24 h for the combination of CQ+PQ and 48 h using CQ+TQ. The density of gametocytes declined over time in all treatment groups, although the decline was more rapid in the ASMQ+PQ group. In conclusion, it was possible to demonstrate the transmission-blocking efficacy of the malaria vivax treatment and that ASMQ+PQ acts faster than the two other treatments.


Asunto(s)
Anopheles , Antimaláricos , Malaria Vivax , Malaria , Animales , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Primaquina/farmacología , Primaquina/uso terapéutico , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/parasitología , Anopheles/parasitología , Cloroquina/farmacología , Cloroquina/uso terapéutico , Malaria/tratamiento farmacológico , Plasmodium vivax
16.
Trop Med Infect Dis ; 7(10)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36288055

RESUMEN

Five species of Plasmodium cause malaria in humans and two of them, P. vivax and P. falciparum, pose the greatest threat. Rapid antigen detection tests (RADT) have been used for many years to diagnose and distinguish malaria caused by these two parasites. P. falciparum malaria can single-handedly be diagnosed using an RADT, which detects the unique P. falciparum specific histidine-rich protein 2 (HRP2). Unfortunately, there is no RADT that can single-handedly diagnose P. vivax malaria because no specific marker of this parasite has yet been described. Here, we report the discovery of a unique P. vivax protein (Vir14, NCBI Reference Sequence: XP_001612449.1) that has no sequence similarity with proteins of P. falciparum and no significant similarities with proteins of other species of Plasmodium. We propose that this protein could be an outstanding candidate molecule for the development of a promising RADT that can single-handedly and specifically diagnose P. vivax malaria.

17.
Int J Parasitol Drugs Drug Resist ; 20: 121-128, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36375339

RESUMEN

Malaria is among the tropical diseases that cause the most deaths in Africa. Around 500,000 malaria deaths are reported yearly among African children under the age of five. Chloroquine (CQ) is a low-cost antimalarial used worldwide for the treatment of Plasmodium vivax malaria. Due to resistance mechanisms, CQ is no longer effective against most malaria cases caused by P. falciparum. The World Health Organization recommends artemisinin combination therapies for P. falciparum malaria, but resistance is emerging in Southeast Asia and some parts of Africa. Therefore, new medicines for treating malaria are urgently needed. Previously, our group identified the 4-aminoquinoline DAQ, a CQ analog containing an acetylenic bond in its side chain, which overcomes CQ resistance in K1 P. falciparum strains. In this work, the antiplasmodial profile, drug-like properties, and pharmacokinetics of DAQ were further investigated. DAQ showed no cross-resistance against standard CQ-resistant strains (e.g., Dd2, IPC 4912, RF12) nor against P. falciparum and P. vivax isolates from patients in the Brazilian Amazon. Using drug pressure assays, DAQ showed a low propensity to generate resistance. DAQ showed considerable solubility but low metabolic stability. The main metabolite was identified as a mono N-deethylated derivative (DAQM), which also showed significant inhibitory activity against CQ-resistant P. falciparum strains. Our findings indicated that the presence of a triple bond in CQ-analogues may represent a low-cost opportunity to overcome known mechanisms of resistance in the malaria parasite.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria Vivax , Malaria , Plasmodium , Niño , Humanos , Cloroquina/farmacología , Cloroquina/uso terapéutico , Plasmodium falciparum , Acetileno/farmacología , Acetileno/uso terapéutico , Alquinos/farmacología , Alquinos/uso terapéutico , Resistencia a Medicamentos , Antimaláricos/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Malaria Vivax/tratamiento farmacológico , Malaria/tratamiento farmacológico
18.
Nat Commun ; 13(1): 2158, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35444200

RESUMEN

Drug resistance and a dire lack of transmission-blocking antimalarials hamper malaria elimination. Here, we present the pantothenamide MMV693183 as a first-in-class acetyl-CoA synthetase (AcAS) inhibitor to enter preclinical development. Our studies demonstrate attractive drug-like properties and in vivo efficacy in a humanized mouse model of Plasmodium falciparum infection. The compound shows single digit nanomolar in vitro activity against P. falciparum and P. vivax clinical isolates, and potently blocks P. falciparum transmission to Anopheles mosquitoes. Genetic and biochemical studies identify AcAS as the target of the MMV693183-derived antimetabolite, CoA-MMV693183. Pharmacokinetic-pharmacodynamic modelling predict that a single 30 mg oral dose is sufficient to cure a malaria infection in humans. Toxicology studies in rats indicate a > 30-fold safety margin in relation to the predicted human efficacious exposure. In conclusion, MMV693183 represents a promising candidate for further (pre)clinical development with a novel mode of action for treatment of malaria and blocking transmission.


Asunto(s)
Antimaláricos , Antagonistas del Ácido Fólico , Malaria Falciparum , Malaria Vivax , Malaria , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Malaria Vivax/tratamiento farmacológico , Ratones , Ácido Pantoténico/análogos & derivados , Plasmodium falciparum/genética , Ratas
19.
Commun Biol ; 5(1): 1411, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36564617

RESUMEN

Traditionally, patient travel history has been used to distinguish imported from autochthonous malaria cases, but the dormant liver stages of Plasmodium vivax confound this approach. Molecular tools offer an alternative method to identify, and map imported cases. Using machine learning approaches incorporating hierarchical fixation index and decision tree analyses applied to 799 P. vivax genomes from 21 countries, we identified 33-SNP, 50-SNP and 55-SNP barcodes (GEO33, GEO50 and GEO55), with high capacity to predict the infection's country of origin. The Matthews correlation coefficient (MCC) for an existing, commonly applied 38-SNP barcode (BR38) exceeded 0.80 in 62% countries. The GEO panels outperformed BR38, with median MCCs > 0.80 in 90% countries at GEO33, and 95% at GEO50 and GEO55. An online, open-access, likelihood-based classifier framework was established to support data analysis (vivaxGEN-geo). The SNP selection and classifier methods can be readily amended for other use cases to support malaria control programs.


Asunto(s)
Malaria Vivax , Malaria , Humanos , Malaria Vivax/diagnóstico , Malaria Vivax/genética , Funciones de Verosimilitud , Plasmodium vivax/genética , Internet
20.
PLoS One ; 16(11): e0258637, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34727117

RESUMEN

Peptide-based vaccines have demonstrated to be an important way to induce long-lived immune responses and, therefore, a promising strategy in the rational of vaccine development. As to malaria, among the classic vaccine targets, the Apical membrane antigen (AMA-1) was proven to have important B cell epitopes that can induce specific immune response and, hence, became key players for a vaccine approach. The peptides selection was carried out using a bioinformatic approach based on Hidden Markov Models profiles of known antigens and propensity scale methods based on hydrophilicity and secondary structure prediction. The antigenicity of the selected B-cell peptides was assessed by multiple serological assays using sera from acute P.vivax infected subjects. The synthetic peptides were recognized by 45.5%, 48.7% and 32.2% of infected subjects for peptides I, II and III respectively. Moreover, when synthetized together (tripeptide), the reactivity increases up to 62%, which is comparable to the reactivity found against the whole protein PvAMA-1 (57%). Furthermore, IgG reactivity against the tripeptide after depletion was reduced by 42%, indicating that these epitopes may be responsible for a considerable part of the protein immunogenicity. These results represent an excellent perspective regarding future chimeric vaccine constructions that may come to contemplate several targets with the potential to generate the robust and protective immune response that a vivax malaria vaccine needs to succeed.


Asunto(s)
Antígenos de Protozoos/inmunología , Epítopos de Linfocito B/inmunología , Vacunas contra la Malaria/inmunología , Proteínas de la Membrana/inmunología , Péptidos/inmunología , Plasmodium vivax/inmunología , Proteínas Protozoarias/inmunología , Adulto , Secuencia de Aminoácidos , Formación de Anticuerpos/inmunología , Estudios de Casos y Controles , Femenino , Humanos , Epítopos Inmunodominantes/inmunología , Inmunoglobulina G/inmunología , Malaria Vivax/epidemiología , Malaria Vivax/inmunología , Masculino , Persona de Mediana Edad , Péptidos/química , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA