Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 50(D1): D480-D487, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34850135

RESUMEN

The Database of Intrinsically Disordered Proteins (DisProt, URL: https://disprot.org) is the major repository of manually curated annotations of intrinsically disordered proteins and regions from the literature. We report here recent updates of DisProt version 9, including a restyled web interface, refactored Intrinsically Disordered Proteins Ontology (IDPO), improvements in the curation process and significant content growth of around 30%. Higher quality and consistency of annotations is provided by a newly implemented reviewing process and training of curators. The increased curation capacity is fostered by the integration of DisProt with APICURON, a dedicated resource for the proper attribution and recognition of biocuration efforts. Better interoperability is provided through the adoption of the Minimum Information About Disorder (MIADE) standard, an active collaboration with the Gene Ontology (GO) and Evidence and Conclusion Ontology (ECO) consortia and the support of the ELIXIR infrastructure.


Asunto(s)
Bases de Datos de Proteínas , Proteínas Intrínsecamente Desordenadas/metabolismo , Anotación de Secuencia Molecular , Programas Informáticos , Secuencia de Aminoácidos , ADN/genética , ADN/metabolismo , Conjuntos de Datos como Asunto , Ontología de Genes , Humanos , Internet , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Unión Proteica , ARN/genética , ARN/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(3): 835-844, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30606802

RESUMEN

Mycobacteria are a wide group of organisms that includes strict pathogens, such as Mycobacterium tuberculosis, as well as environmental species known as nontuberculous mycobacteria (NTM), some of which-namely Mycobacterium avium-are important opportunistic pathogens. In addition to a distinctive cell envelope mediating critical interactions with the host immune system and largely responsible for their formidable resistance to antimicrobials, mycobacteria synthesize rare intracellular polymethylated polysaccharides implicated in the modulation of fatty acid metabolism, thus critical players in cell envelope assembly. These are the 6-O-methylglucose lipopolysaccharides (MGLP) ubiquitously detected across the Mycobacterium genus, and the 3-O-methylmannose polysaccharides (MMP) identified only in NTM. The polymethylated nature of these polysaccharides renders the intervening methyltransferases essential for their optimal function. Although the knowledge of MGLP biogenesis is greater than that of MMP biosynthesis, the methyltransferases of both pathways remain uncharacterized. Here, we report the identification and characterization of a unique S-adenosyl-l-methionine-dependent sugar 1-O-methyltransferase (MeT1) from Mycobacterium hassiacum that specifically blocks the 1-OH position of 3,3'-di-O-methyl-4α-mannobiose, a probable early precursor of MMP, which we chemically synthesized. The high-resolution 3D structure of MeT1 in complex with its exhausted cofactor, S-adenosyl-l-homocysteine, together with mutagenesis studies and molecular docking simulations, unveiled the enzyme's reaction mechanism. The functional and structural properties of this unique sugar methyltransferase further our knowledge of MMP biosynthesis and provide important tools to dissect the role of MMP in NTM physiology and resilience.


Asunto(s)
Metilmanósidos/metabolismo , Metiltransferasas/metabolismo , Mycobacterium/metabolismo , Polisacáridos Bacterianos/biosíntesis , Dominio Catalítico , Metiltransferasas/genética , Familia de Multigenes , Mycobacterium/genética
3.
Proc Natl Acad Sci U S A ; 116(28): 13873-13878, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31221752

RESUMEN

Hematophagous organisms produce a suite of salivary proteins which interact with the host's coagulation machinery to facilitate the acquisition and digestion of a bloodmeal. Many of these biomolecules inhibit the central blood-clotting serine proteinase thrombin that is also the target of several clinically approved anticoagulants. Here a bioinformatics approach is used to identify seven tick proteins with putative thrombin inhibitory activity that we predict to be posttranslationally sulfated at two conserved tyrosine residues. To corroborate the biological role of these molecules and investigate the effects of amino acid sequence and sulfation modifications on thrombin inhibition and anticoagulant activity, a library of 34 homogeneously sulfated protein variants were rapidly assembled using one-pot diselenide-selenoester ligation (DSL)-deselenization chemistry. Downstream functional characterization validated the thrombin-directed activity of all target molecules and revealed that posttranslational sulfation of specific tyrosine residues crucially modulates potency. Importantly, access to this homogeneously modified protein library not only enabled the determination of key structure-activity relationships and the identification of potent anticoagulant leads, but also revealed subtleties in the mechanism of thrombin inhibition, between and within the families, that would be impossible to predict from the amino acid sequence alone. The synthetic platform described here therefore serves as a highly valuable tool for the generation and thorough characterization of libraries of related peptide and/or protein molecules (with or without modifications) for the identification of lead candidates for medicinal chemistry programs.


Asunto(s)
Anticoagulantes/química , Proteínas de Insectos/química , Proteínas y Péptidos Salivales/química , Trombina/química , Secuencia de Aminoácidos/genética , Coagulación Sanguínea/genética , Biología Computacional , Biblioteca de Genes , Humanos , Proteínas de Insectos/genética , Procesamiento Proteico-Postraduccional/genética , Proteínas y Péptidos Salivales/genética , Relación Estructura-Actividad , Trombina/antagonistas & inhibidores , Trombina/genética , Tirosina/química
4.
Biochem J ; 477(3): 601-614, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31913441

RESUMEN

The pro-oxidant effect of free heme (Fe2+-protoporphyrin IX) is neutralized by phylogenetically-conserved heme oxygenases (HMOX) that generate carbon monoxide, free ferrous iron, and biliverdin (BV) tetrapyrrole(s), with downstream BV reduction by non-redundant NADPH-dependent BV reductases (BLVRA and BLVRB) that retain isomer-restricted functional activity for bilirubin (BR) generation. Regioselectivity for the heme α-meso carbon resulting in predominant BV IXα generation is a defining characteristic of canonical HMOXs, thereby limiting generation and availability of BVs IXß, IXδ, and IXγ as BLVRB substrates. We have now exploited the unique capacity of the Pseudomonas aeruginosa (P. aeruginosa) hemO/pigA gene for focused generation of isomeric BVs (IXß and IXδ). A scalable system followed by isomeric separation yielded highly pure samples with predicted hydrogen-bonded structure(s) as documented by 1H NMR spectroscopy. Detailed kinetic studies established near-identical activity of BV IXß and BV IXδ as BLVRB-selective substrates, with confirmation of an ordered sequential mechanism of BR/NADP+ dissociation. Halogenated xanthene-based compounds previously identified as BLVRB-targeted flavin reductase inhibitors displayed comparable inhibition parameters using BV IXß as substrate, documenting common structural features of the cofactor/substrate-binding pocket. These data provide further insights into structure/activity mechanisms of isomeric BVs as BLVRB substrates, with potential applicability to further dissect redox-regulated functions in cytoprotection and hematopoiesis.


Asunto(s)
Biliverdina , Hemo Oxigenasa (Desciclizante) , Hemo/metabolismo , Pseudomonas aeruginosa/metabolismo , Biliverdina/química , Biliverdina/metabolismo , Genes Bacterianos/fisiología , Hemo Oxigenasa (Desciclizante)/química , Hemo Oxigenasa (Desciclizante)/genética , Hemo Oxigenasa (Desciclizante)/metabolismo , Cinética , Oxidación-Reducción , Oxidorreductasas/metabolismo , Pseudomonas aeruginosa/genética
5.
Angew Chem Int Ed Engl ; 60(10): 5348-5356, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33345438

RESUMEN

Blood feeding arthropods, such as leeches, ticks, flies and mosquitoes, provide a privileged source of peptidic anticoagulant molecules. These primarily operate through inhibition of the central coagulation protease thrombin by binding to the active site and either exosite I or exosite II. Herein, we describe the rational design of a novel class of trivalent thrombin inhibitors that simultaneously block both exosites as well as the active site. These engineered hybrids were synthesized using tandem diselenide-selenoester ligation (DSL) and native chemical ligation (NCL) reactions in one-pot. The most potent trivalent inhibitors possessed femtomolar inhibition constants against α-thrombin and were selective over related coagulation proteases. A lead hybrid inhibitor possessed potent anticoagulant activity, blockade of both thrombin generation and platelet aggregation in vitro and efficacy in a murine thrombosis model at 1 mg kg-1 . The rational engineering approach described here lays the foundation for the development of potent and selective inhibitors for a range of other enzymatic targets that possess multiple sites for the disruption of protein-protein interactions, in addition to an active site.


Asunto(s)
Anticoagulantes/uso terapéutico , Inhibidores de Agregación Plaquetaria/uso terapéutico , Proteínas y Péptidos Salivales/uso terapéutico , Trombosis/tratamiento farmacológico , Amblyomma/química , Animales , Anopheles/química , Anticoagulantes/síntesis química , Anticoagulantes/metabolismo , Dominio Catalítico , Humanos , Masculino , Ratones Endogámicos C57BL , Inhibidores de Agregación Plaquetaria/síntesis química , Inhibidores de Agregación Plaquetaria/metabolismo , Unión Proteica , Ingeniería de Proteínas , Proteínas y Péptidos Salivales/síntesis química , Proteínas y Péptidos Salivales/metabolismo , Trombina/química , Trombina/metabolismo , Moscas Tse-Tse/química
6.
Phys Chem Chem Phys ; 22(28): 16143-16149, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32638771

RESUMEN

When placed in the same environment, biochemically unrelated macromolecules influence each other's biological function through macromolecular crowding (MC) effects. This has been illustrated in vitro by the effects of inert polymers on protein stability, protein structure, enzyme kinetics and protein aggregation kinetics. While a unified way to quantitatively characterize MC is still lacking, we show that the crystal solubility of lysozyme can be used to predict the influence of crowding agents on the catalytic efficiency of this enzyme. In order to capture general enthalpic effects, as well as hard entropic effects that are specific of large molecules, we tested sucrose and its cross-linked polymer Ficoll-70 as additives. Despite the different conditions of pH and ionic strength adopted, both the crystallization and the enzymatic assays point to an entropic contribution of approximately -1 kcal mol-1 caused by MC. Our results demonstrate that the thermodynamic activity of proteins is markedly increased by the reduction of accessible volume caused by the presence of macromolecular cosolutes. Unlike what is observed in protein folding studies, this MC effect cannot be reproduced using equivalent concentrations of monomeric crowding units. Applicable to any crystallizable protein, the thermodynamic interpretation of MC based on crystal solubility is expected to help in elucidating the full extent and importance of hard-type interactions in the crowded environment of the cell.


Asunto(s)
Sustancias Macromoleculares/metabolismo , Muramidasa/metabolismo , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Sustancias Macromoleculares/química , Modelos Moleculares , Muramidasa/química , Concentración Osmolar , Solubilidad , Termodinámica
7.
J Biol Chem ; 293(15): 5431-5446, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29487133

RESUMEN

Heme cytotoxicity is minimized by a two-step catabolic reaction that generates biliverdin (BV) and bilirubin (BR) tetrapyrroles. The second step is regulated by two non-redundant biliverdin reductases (IXα (BLVRA) and IXß (BLVRB)), which retain isomeric specificity and NAD(P)H-dependent redox coupling linked to BR's antioxidant function. Defective BLVRB enzymatic activity with antioxidant mishandling has been implicated in metabolic consequences of hematopoietic lineage fate and enhanced platelet counts in humans. We now outline an integrated platform of in silico and crystallographic studies for the identification of an initial class of compounds inhibiting BLVRB with potencies in the nanomolar range. We found that the most potent BLVRB inhibitors contain a tricyclic hydrocarbon core structure similar to the isoalloxazine ring of flavin mononucleotide and that both xanthene- and acridine-based compounds inhibit BLVRB's flavin and dichlorophenolindophenol (DCPIP) reductase functions. Crystallographic studies of ternary complexes with BLVRB-NADP+-xanthene-based compounds confirmed inhibitor binding adjacent to the cofactor nicotinamide and interactions with the Ser-111 side chain. This residue previously has been identified as critical for maintaining the enzymatic active site and cellular reductase functions in hematopoietic cells. Both acridine- and xanthene-based compounds caused selective and concentration-dependent loss of redox coupling in BLVRB-overexpressing promyelocytic HL-60 cells. These results provide promising chemical scaffolds for the development of enhanced BLVRB inhibitors and identify chemical probes to better dissect the role of biliverdins, alternative substrates, and BLVRB function in physiologically relevant cellular contexts.


Asunto(s)
Inhibidores Enzimáticos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , 2,6-Dicloroindofenol/química , 2,6-Dicloroindofenol/farmacología , Coenzimas/química , Coenzimas/metabolismo , Simulación por Computador , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Células HL-60 , Humanos , Niacinamida/química , Niacinamida/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo
8.
J Biol Chem ; 292(30): 12632-12642, 2017 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-28592490

RESUMEN

Saliva of blood-feeding arthropods carries several antihemostatic compounds whose physiological role is to facilitate successful acquisition of blood. The identification of novel natural anticoagulants and the understanding of their mechanism of action may offer opportunities for designing new antithrombotics disrupting blood clotting. We report here an in-depth structural and functional analysis of the anophelin family member cE5, a salivary protein from the major African malaria vector Anopheles gambiae that specifically, tightly, and quickly binds and inhibits thrombin. Using calorimetry, functional assays, and complementary structural techniques, we show that the central region of the protein, encompassing amino acids Asp-31-Arg-62, is the region mainly responsible for α-thrombin binding and inhibition. As previously reported for the Anopheles albimanus orthologue anophelin, cE5 binds both thrombin exosite I with segment Glu-35-Asp-47 and the catalytic site with the region Pro-49-Arg-56, which includes the highly conserved DPGR tetrapeptide. Moreover, the N-terminal Ala-1-Ser-30 region of cE5 (which includes an RGD tripeptide) and the additional C-terminal serine-rich Asn-63-Glu-82 region (absent in orthologues from anophelines of the New World species A. albimanus and Anopheles darlingi) also played some functionally relevant role. Indeed, we observed decreased thrombin binding and inhibitory properties even when using the central cE5 fragment (Asp-31-Arg-62) alone. In summary, these results shed additional light on the mechanism of thrombin binding and inhibition by this family of salivary anticoagulants from anopheline mosquitoes.


Asunto(s)
Anopheles/química , Anticoagulantes/farmacología , Proteínas y Péptidos Salivales/farmacología , Trombina/antagonistas & inhibidores , Animales , Humanos , Modelos Moleculares , Trombina/metabolismo
9.
Appl Microbiol Biotechnol ; 101(18): 6951-6968, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28770303

RESUMEN

The potential of using a synthetic cardosin-based rennet in cheese manufacturing was recently demonstrated with the development and optimization of production of a recombinant form of cardosin B in Kluyveromyces lactis. With the goal of providing a more detailed characterization of this rennet, we herein evaluate the impact of the plant-specific insert (PSI) on cardosin B secretion in this yeast, and provide a thorough analysis of the specificity requirements as well as the biochemical and structural properties of the isolated recombinant protease. We demonstrate that the PSI domain can be substituted by different linker sequences without substantially affecting protein secretion and milk clotting activity. However, the presence of small portions of the PSI results in dramatic reductions of secretion yields in this heterologous system. Kinetic characterization and specificity profiling results clearly suggest that synthetic cardosin B displays lower catalytic efficiency and is more sequence selective than native cardosin B. Elucidation of the structure of synthetic cardosin B confirms the canonical fold of an aspartic protease with the presence of two high mannose-type, N-linked glycan structures; however, there are some differences in the conformation of the flap region when compared to cardosin A. These subtle variations in catalytic properties and the more stringent substrate specificity of synthetic cardosin B help to explain the observed suitability of this rennet for cheese production.


Asunto(s)
Ácido Aspártico Endopeptidasas/metabolismo , Quimosina/metabolismo , Kluyveromyces/metabolismo , Plantas/enzimología , Animales , Ácido Aspártico Endopeptidasas/genética , Queso , Quimosina/genética , Glicosilación , Kluyveromyces/genética , Leche/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Transporte de Proteínas
10.
Proc Natl Acad Sci U S A ; 111(22): E2251-60, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24847070

RESUMEN

Iron-sulfur clusters function as cofactors of a wide range of proteins, with diverse molecular roles in both prokaryotic and eukaryotic cells. Dedicated machineries assemble the clusters and deliver them to the final acceptor molecules in a tightly regulated process. In the prototypical Gram-negative bacterium Escherichia coli, the two existing iron-sulfur cluster assembly systems, iron-sulfur cluster (ISC) and sulfur assimilation (SUF) pathways, are closely interconnected. The ISC pathway regulator, IscR, is a transcription factor of the helix-turn-helix type that can coordinate a [2Fe-2S] cluster. Redox conditions and iron or sulfur availability modulate the ligation status of the labile IscR cluster, which in turn determines a switch in DNA sequence specificity of the regulator: cluster-containing IscR can bind to a family of gene promoters (type-1) whereas the clusterless form recognizes only a second group of sequences (type-2). However, iron-sulfur cluster biogenesis in Gram-positive bacteria is not so well characterized, and most organisms of this group display only one of the iron-sulfur cluster assembly systems. A notable exception is the unique Gram-positive dissimilatory metal reducing bacterium Thermincola potens, where genes from both systems could be identified, albeit with a diverging organization from that of Gram-negative bacteria. We demonstrated that one of these genes encodes a functional IscR homolog and is likely involved in the regulation of iron-sulfur cluster biogenesis in T. potens. Structural and biochemical characterization of T. potens and E. coli IscR revealed a strikingly similar architecture and unveiled an unforeseen conservation of the unique mechanism of sequence discrimination characteristic of this distinctive group of transcription regulators.


Asunto(s)
Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Bacterias Grampositivas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Factores de Transcripción/metabolismo , Cristalografía por Rayos X , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dimerización , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Bacterias Grampositivas/genética , Secuencias Hélice-Giro-Hélice , Proteínas Hierro-Azufre/genética , Mutación Puntual , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Factores de Transcripción/genética
11.
Biochim Biophys Acta ; 1854(9): 1101-12, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25641558

RESUMEN

Iron-sulfur clusters are essential cofactors in a myriad of metabolic pathways. Therefore, their biogenesis is tightly regulated across a variety of organisms and environmental conditions. In Gram-negative bacteria, two pathways - ISC and SUF - concur for maintaining intracellular iron-sulfur cluster balance. Recently, the mechanism of iron-sulfur cluster biosynthesis regulation by IscR, an iron-sulfur cluster-containing regulator encoded by the isc operon, was found to be conserved in some Gram-positive bacteria. Belonging to the Rrf2 family of transcriptional regulators, IscR displays a single helix-turn-helix DNA-binding domain but is able to recognize two distinct DNA sequence motifs, switching its specificity upon cluster ligation. This review provides an overview of gene regulation by iron-sulfur cluster-containing sensors, in the light of the recent structural characterization of cluster-less free and DNA-bound IscR, which provided insights into the molecular mechanism of nucleotide sequence recognition and discrimination of this unique transcription factor. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.


Asunto(s)
ADN Bacteriano/metabolismo , Proteínas de Escherichia coli/fisiología , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción/fisiología , Secuencia de Aminoácidos , Escherichia coli , Interacciones Huésped-Patógeno , Datos de Secuencia Molecular
12.
Biochim Biophys Acta ; 1852(9): 1950-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26073430

RESUMEN

BACKGROUND: Machado-Joseph Disease (MJD), a form of dominantly inherited ataxia belonging to the group of polyQ expansion neurodegenerative disorders, occurs when a threshold value for the number of glutamines in Ataxin-3 (Atx3) polyglutamine region is exceeded. As a result of its modular multidomain architecture, Atx3 is known to engage in multiple macromolecular interactions, which might be unbalanced when the polyQ tract is expanded, culminating in the aggregation and formation of intracellular inclusions, a unifying fingerprint of this group of neurodegenerative disorders. Since aggregation is specific to certain brain regions, localization-dependent posttranslational modifications that differentially affect Atx3 might also contribute for MJD. METHODS: We combined in vitro and cellular approaches to address SUMOylation in the brain-predominant Atx3 isoform and assessed the impact of this posttranslational modification on Atx3 self-assembly and interaction with its native partner, p97. RESULTS: We demonstrate that Atx3 is SUMOylated at K356 both in vitro and in cells, which contributes for decreased formation of amyloid fibrils and for increased affinity towards p97. CONCLUSIONS AND GENERAL SIGNIFICANCE: These findings highlight the role of SUMOylation as a regulator of Atx3 function, with implications on Atx3 protein interaction network and self-assembly, with potential impact for further understanding the molecular mechanisms underlying MJD pathogenesis.

13.
J Virol ; 89(7): 3648-58, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25589659

RESUMEN

UNLABELLED: The complexity of viral RNA synthesis and the numerous participating factors require a mechanism to topologically coordinate and concentrate these multiple viral and cellular components, ensuring a concerted function. Similarly to all other positive-strand RNA viruses, picornaviruses induce rearrangements of host intracellular membranes to create structures that act as functional scaffolds for genome replication. The membrane-targeting proteins 2B and 2C, their precursor 2BC, and protein 3A appear to be primarily involved in membrane remodeling. Little is known about the structure of these proteins and the mechanisms by which they induce massive membrane remodeling. Here we report the crystal structure of the soluble region of hepatitis A virus (HAV) protein 2B, consisting of two domains: a C-terminal helical bundle preceded by an N-terminally curved five-stranded antiparallel ß-sheet that displays striking structural similarity to the ß-barrel domain of enteroviral 2A proteins. Moreover, the helicoidal arrangement of the protein molecules in the crystal provides a model for 2B-induced host membrane remodeling during HAV infection. IMPORTANCE: No structural information is currently available for the 2B protein of any picornavirus despite it being involved in a critical process in viral factory formation: the rearrangement of host intracellular membranes. Here we present the structure of the soluble domain of the 2B protein of hepatitis A virus (HAV). Its arrangement, both in crystals and in solution under physiological conditions, can help to understand its function and sheds some light on the membrane rearrangement process, a putative target of future antiviral drugs. Moreover, this first structure of a picornaviral 2B protein also unveils a closer evolutionary relationship between the hepatovirus and enterovirus genera within the Picornaviridae family.


Asunto(s)
Virus de la Hepatitis A/química , Proteínas no Estructurales Virales/química , Cristalografía por Rayos X , Virus de la Hepatitis A/fisiología , Interacciones Huésped-Patógeno , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/virología , Sustancias Macromoleculares/ultraestructura , Microscopía Electrónica de Transmisión , Modelos Biológicos , Modelos Moleculares , Conformación Proteica , Proteínas no Estructurales Virales/metabolismo , Replicación Viral
14.
Proc Natl Acad Sci U S A ; 109(52): E3649-58, 2012 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-23223529

RESUMEN

Anopheles mosquitoes are vectors of malaria, a potentially fatal blood disease affecting half a billion humans worldwide. These blood-feeding insects include in their antihemostatic arsenal a potent thrombin inhibitor, the flexible and cysteine-less anophelin. Here, we present a thorough structure-and-function analysis of thrombin inhibition by anophelin, including the 2.3-Å crystal structure of the human thrombin·anophelin complex. Anophelin residues 32-61 are well-defined by electron density, completely occupying the long cleft between the active site and exosite I. However, in striking contrast to substrates, the D50-R53 anophelin tetrapeptide occupies the active site cleft of the enzyme, whereas the upstream residues A35-P45 shield the regulatory exosite I, defining a unique reverse-binding mode of an inhibitor to the target proteinase. The extensive interactions established, the disruption of thrombin's active site charge-relay system, and the insertion of residue R53 into the proteinase S(1) pocket in an orientation opposed to productive substrates explain anophelin's remarkable specificity and resistance to proteolysis by thrombin. Complementary biophysical and functional characterization of point mutants and truncated versions of anophelin unambiguously establish the molecular mechanism of action of this family of serine proteinase inhibitors (I77). These findings have implications for the design of novel antithrombotics.


Asunto(s)
Anticoagulantes/farmacología , Antitrombinas/farmacología , Proteínas de Insectos/farmacología , Insectos Vectores/química , Malaria/parasitología , Proteínas y Péptidos Salivales/farmacología , Trombina/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Anopheles/química , Anticoagulantes/química , Antitrombinas/química , Arginina/metabolismo , Coagulación Sanguínea/efectos de los fármacos , Dominio Catalítico , Secuencia Conservada , Cristalografía por Rayos X , Humanos , Proteínas Inmovilizadas/metabolismo , Proteínas de Insectos/química , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Proteínas y Péptidos Salivales/química , Alineación de Secuencia , Relación Estructura-Actividad , Especificidad por Sustrato/efectos de los fármacos , Resonancia por Plasmón de Superficie , Trombina/metabolismo , Tiempo de Trombina
15.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 4): 981-93, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24699643

RESUMEN

The first step of nitrogen assimilation in higher plants, the energy-driven incorporation of ammonia into glutamate, is catalyzed by glutamine synthetase. This central process yields the readily metabolizable glutamine, which in turn is at the basis of all subsequent biosynthesis of nitrogenous compounds. The essential role performed by glutamine synthetase makes it a prime target for herbicidal compounds, but also a suitable intervention point for the improvement of crop yields. Although the majority of crop plants are dicotyledonous, little is known about the structural organization of glutamine synthetase in these organisms and about the functional differences between the different isoforms. Here, the structural characterization of two glutamine synthetase isoforms from the model legume Medicago truncatula is reported: the crystallographic structure of cytoplasmic GSII-1a and an electron cryomicroscopy reconstruction of plastid-located GSII-2a. Together, these structural models unveil a decameric organization of dicotyledonous glutamine synthetase, with two pentameric rings weakly connected by inter-ring loops. Moreover, rearrangement of these dynamic loops changes the relative orientation of the rings, suggesting a zipper-like mechanism for their assembly into a decameric enzyme. Finally, the atomic structure of M. truncatula GSII-1a provides important insights into the structural determinants of herbicide resistance in this family of enzymes, opening new avenues for the development of herbicide-resistant plants.


Asunto(s)
Glutamato-Amoníaco Ligasa/química , Medicago truncatula/enzimología , Secuencia de Aminoácidos , Citosol/enzimología , Isoenzimas/química , Modelos Moleculares , Datos de Secuencia Molecular , Plastidios/enzimología , Estructura Cuaternaria de Proteína , Análisis de Secuencia de Proteína
16.
J Am Chem Soc ; 136(23): 8161-4, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24873761

RESUMEN

Native chemical ligation followed by desulfurization is a powerful strategy for the assembly of proteins. Here we describe the development of a high-yielding, one-pot ligation-desulfurization protocol that uses trifluoroethanethiol (TFET) as a novel thiol additive. The synthetic utility of this TFET-enabled methodology is demonstrated by the efficient multi-step one-pot syntheses of two tick-derived proteins, chimadanin and madanin-1, without the need for any intermediary purification.


Asunto(s)
Proteínas de Insectos/química , Proteínas de Insectos/síntesis química , Trifluoroetanol/análogos & derivados , Técnicas de Química Sintética , Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Trifluoroetanol/química
17.
Proc Natl Acad Sci U S A ; 108(34): 14091-6, 2011 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-21825144

RESUMEN

In a restricted group of opportunistic fungal pathogens the universal leucine CUG codon is translated both as serine (97%) and leucine (3%), challenging the concept that translational ambiguity has a negative impact in living organisms. To elucidate the molecular mechanisms underlying the in vivo tolerance to a nonconserved genetic code alteration, we have undertaken an extensive structural analysis of proteins containing CUG-encoded residues and solved the crystal structures of the two natural isoforms of Candida albicans seryl-tRNA synthetase. We show that codon reassignment resulted in a nonrandom genome-wide CUG redistribution tailored to minimize protein misfolding events induced by the large-scale leucine-to-serine replacement within the CTG clade. Leucine or serine incorporation at the CUG position in C. albicans seryl-tRNA synthetase induces only local structural changes and, although both isoforms display tRNA serylation activity, the leucine-containing isoform is more active. Similarly, codon ambiguity is predicted to shape the function of C. albicans proteins containing CUG-encoded residues in functionally relevant positions, some of which have a key role in signaling cascades associated with morphological changes and pathogenesis. This study provides a first detailed analysis on natural reassignment of codon identity, unveiling a highly dynamic evolutionary pattern of thousands of fungal CUG codons to confer an optimized balance between protein structural robustness and functional plasticity.


Asunto(s)
Candida albicans/genética , Biosíntesis de Proteínas , Aminoácidos , Candida albicans/enzimología , Candida albicans/patogenicidad , Codón/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Isoenzimas/metabolismo , Modelos Moleculares , Sistemas de Lectura Abierta/genética , Pliegue de Proteína , Multimerización de Proteína , Serina-ARNt Ligasa/química , Serina-ARNt Ligasa/metabolismo
18.
Nat Biotechnol ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689027

RESUMEN

Drugs are administered at a dosing schedule set by their therapeutic index, and termination of action is achieved by clearance and metabolism of the drug. In some cases, such as anticoagulant drugs or immunotherapeutics, it is important to be able to quickly reverse the drug's action. Here, we report a general strategy to achieve on-demand reversibility by designing a supramolecular drug (a noncovalent assembly of two cooperatively interacting drug fragments held together by transient hybridization of peptide nucleic acid (PNA)) that can be reversed with a PNA antidote that outcompetes the hybridization between the fragments. We demonstrate the approach with thrombin-inhibiting anticoagulants, creating very potent and reversible bivalent direct thrombin inhibitors (Ki = 74 pM). The supramolecular inhibitor effectively inhibited thrombus formation in mice in a needle injury thrombosis model, and this activity could be reversed by administration of the PNA antidote. This design is applicable to therapeutic targets where two binding sites can be identified.

19.
J Struct Biol ; 181(2): 89-94, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23178456

RESUMEN

Selenomethionine labeling is the most common technique used in protein crystallography to derivatize recombinant proteins for experimental phasing using anomalous scattering at tunable synchrotron beamlines. Recently, it has been shown that UV radiation depletes electron density of selenium atoms of selenomethionine residues and that UV radiation-damage-induced phasing (equivalent to single isomorphous replacement) protocol can be applied to calculate experimental phases. Here we present the straightforward integration of a UV source with an in-house diffractometer. We show how this setup can extend the capabilities of a sealed tube X-ray generator and be used for experimental phasing of selenium-labeled proteins.


Asunto(s)
Cristalografía/métodos , Modelos Moleculares , Proteínas Recombinantes/análisis , Selenometionina/química , Rayos Ultravioleta , Rayos Láser , Proteínas Recombinantes/química , Difracción de Rayos X/métodos
20.
mBio ; 14(4): e0063823, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37526476

RESUMEN

An important feature associated with Candida albicans pathogenicity is its ability to switch between yeast and hyphal forms, a process in which CaRas1 plays a key role. CaRas1 is activated by the guanine nucleotide exchange factor (GEF) CaCdc25, triggering hyphal growth-related signaling pathways through its conserved GTP-binding (G)-domain. An important function in hyphal growth has also been proposed for the long hypervariable region downstream the G-domain, whose unusual content of polyglutamine stretches and Q/N repeats make CaRas1 unique within Ras proteins. Despite its biological importance, both the structure of CaRas1 and the molecular basis of its activation by CaCdc25 remain unexplored. Here, we show that CaRas1 has an elongated shape and limited conformational flexibility and that its hypervariable region contains helical structural elements, likely forming an intramolecular coiled-coil. Functional assays disclosed that CaRas1-activation by CaCdc25 is highly efficient, with activities up to 2,000-fold higher than reported for human GEFs. The crystal structure of the CaCdc25 catalytic region revealed an active conformation for the α-helical hairpin, critical for CaRas1-activation, unveiling a specific region exclusive to CTG-clade species. Structural studies on CaRas1/CaCdc25 complexes also revealed an interaction surface clearly distinct from that of homologous human complexes. Furthermore, we identified an inhibitory synthetic peptide, prompting the proposal of a key regulatory mechanism for CaCdc25. To our knowledge, this is the first report of specific inhibition of the CaRas1-activation via targeting its GEF. This, together with their unique pathogen-structural features, disclose a set of novel strategies to specifically block this important virulence-related mechanism. IMPORTANCE Candida albicans is the main causative agent of candidiasis, the commonest fungal infection in humans. The eukaryotic nature of C. albicans and the rapid emergence of antifungal resistance raise the challenge of identifying novel drug targets to battle this prevalent and life-threatening disease. CaRas1 and CaCdc25 are key players in the activation of signaling pathways triggering multiple virulence traits, including the yeast-to-hypha interconversion. The structural similarity of the conserved G-domain of CaRas1 to those of human homologs and the lack of structural information on CaCdc25 has impeded progress in targeting these proteins. The unique structural and functional features for CaRas1 and CaCdc25 presented here, together with the identification of a synthetic peptide capable of specifically inhibiting the GEF activity of CaCdc25, open new possibilities to uncover new antifungal drug targets against C. albicans virulence.


Asunto(s)
Candida albicans , Candidiasis , Humanos , Antifúngicos/farmacología , Antifúngicos/metabolismo , Candidiasis/microbiología , Transducción de Señal , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hifa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA