Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Int J Cancer ; 154(11): 1900-1910, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339851

RESUMEN

Air pollution has been shown to significantly impact human health including cancer. Gastric and upper aerodigestive tract (UADT) cancers are common and increased risk has been associated with smoking and occupational exposures. However, the association with air pollution remains unclear. We pooled European subcohorts (N = 287,576 participants for gastric and N = 297,406 for UADT analyses) and investigated the association between residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone in the warm season (O3w) with gastric and UADT cancer. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. During 5,305,133 and 5,434,843 person-years, 872 gastric and 1139 UADT incident cancer cases were observed, respectively. For gastric cancer, we found no association with PM2.5, NO2 and BC while for UADT the hazard ratios (95% confidence interval) were 1.15 (95% CI: 1.00-1.33) per 5 µg/m3 increase in PM2.5, 1.19 (1.08-1.30) per 10 µg/m3 increase in NO2, 1.14 (1.04-1.26) per 0.5 × 10-5 m-1 increase in BC and 0.81 (0.72-0.92) per 10 µg/m3 increase in O3w. We found no association between long-term ambient air pollution exposure and incidence of gastric cancer, while for long-term exposure to PM2.5, NO2 and BC increased incidence of UADT cancer was observed.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Neoplasias Gástricas , Humanos , Material Particulado/efectos adversos , Material Particulado/análisis , Dióxido de Nitrógeno/efectos adversos , Neoplasias Gástricas/epidemiología , Neoplasias Gástricas/etiología , Incidencia , Exposición a Riesgos Ambientales/efectos adversos , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis
2.
Environ Res ; 252(Pt 3): 118942, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38649012

RESUMEN

Despite the known link between air pollution and cause-specific mortality, its relation to chronic kidney disease (CKD)-associated mortality is understudied. Therefore, we investigated the association between long-term exposure to air pollution and CKD-related mortality in a large multicentre population-based European cohort. Cohort data were linked to local mortality registry data. CKD-death was defined as ICD10 codes N18-N19 or corresponding ICD9 codes. Mean annual exposure at participant's home address was determined with fine spatial resolution exposure models for nitrogen dioxide (NO2), black carbon (BC), ozone (O3), particulate matter ≤2.5 µm (PM2.5) and several elemental constituents of PM2.5. Cox regression models were adjusted for age, sex, cohort, calendar year of recruitment, smoking status, marital status, employment status and neighbourhood mean income. Over a mean follow-up time of 20.4 years, 313 of 289,564 persons died from CKD. Associations were positive for PM2.5 (hazard ratio (HR) with 95% confidence interval (CI) of 1.31 (1.03-1.66) per 5 µg/m3, BC (1.26 (1.03-1.53) per 0.5 × 10- 5/m), NO2 (1.13 (0.93-1.38) per 10 µg/m3) and inverse for O3 (0.71 (0.54-0.93) per 10 µg/m3). Results were robust to further covariate adjustment. Exclusion of the largest sub-cohort contributing 226 cases, led to null associations. Among the elemental constituents, Cu, Fe, K, Ni, S and Zn, representing different sources including traffic, biomass and oil burning and secondary pollutants, were associated with CKD-related mortality. In conclusion, our results suggest an association between air pollution from different sources and CKD-related mortality.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Exposición a Riesgos Ambientales , Insuficiencia Renal Crónica , Humanos , Insuficiencia Renal Crónica/mortalidad , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/inducido químicamente , Masculino , Femenino , Europa (Continente)/epidemiología , Persona de Mediana Edad , Anciano , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/efectos adversos , Estudios de Cohortes , Exposición a Riesgos Ambientales/efectos adversos , Material Particulado/análisis , Material Particulado/efectos adversos , Adulto
3.
Am J Respir Crit Care Med ; 207(4): 406-415, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36409973

RESUMEN

Rationale: Recent evidence highlights the importance of optimal lung development during childhood for health throughout life. Objectives: To explore the plasticity of individual lung function states during childhood. Methods: Prebronchodilator FEV1 z-scores determined at age 8, 16, and 24 years in the Swedish population-based birth cohort BAMSE (Swedish abbreviation for Child [Barn], Allergy, Milieu, Stockholm, Epidemiological study) (N = 3,069) were used. An unbiased, data-driven dependent mixture model was applied to explore lung function states and individual state chains. Lung function catch-up was defined as participants moving from low or very low states to normal or high or very high states, and growth failure as moving from normal or high or very high states to low or very low states. At 24 years, we compared respiratory symptoms, small airway function (multiple-breath washout), and circulating inflammatory protein levels, by using proteomics, across states. Models were replicated in the independent Dutch population-based PIAMA (Prevention and Incidence of Asthma and Mite Allergy) cohort. Measurements and Main Results: Five lung function states were identified in BAMSE. Lung function catch-up and growth failure were observed in 74 (14.5%) BAMSE participants with low or very low states and 36 (2.4%) participants with normal or high or very high states, respectively. The occurrence of catch-up and growth failure was replicated in PIAMA. Early-life risk factors were cumulatively associated with the very low state, as well as with catch-up (inverse association) and growth failure. The very low state as well as growth failure were associated with respiratory symptoms, airflow limitation, and small airway dysfunction at adulthood. Proteomics identified IL-6 and CXCL10 (C-X-C motif chemokine 10) as potential biomarkers of impaired lung function development. Conclusions: Individual lung function states during childhood are plastic, including catch-up and growth failure.


Asunto(s)
Asma , Hipersensibilidad , Niño , Humanos , Adolescente , Adulto Joven , Pulmón , Hipersensibilidad/diagnóstico , Pruebas de Función Respiratoria , Ruidos Respiratorios
4.
Br J Cancer ; 129(4): 656-664, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37420001

RESUMEN

BACKGROUND: Risk factors for malignant tumours of the central nervous system (CNS) are largely unknown. METHODS: We pooled six European cohorts (N = 302,493) and assessed the association between residential exposure to nitrogen dioxide (NO2), fine particles (PM2.5), black carbon (BC), ozone (O3) and eight elemental components of PM2.5 (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) and malignant intracranial CNS tumours defined according to the International Classification of Diseases ICD-9/ICD-10 codes 192.1/C70.0, 191.0-191.9/C71.0-C71.9, 192.0/C72.2-C72.5. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. RESULTS: During 5,497,514 person-years of follow-up (average 18.2 years), we observed 623 malignant CNS tumours. The results of the fully adjusted linear analyses showed a hazard ratio (95% confidence interval) of 1.07 (0.95, 1.21) per 10 µg/m³ NO2, 1.17 (0.96, 1.41) per 5 µg/m³ PM2.5, 1.10 (0.97, 1.25) per 0.5 10-5m-1 BC, and 0.99 (0.84, 1.17) per 10 µg/m³ O3. CONCLUSIONS: We observed indications of an association between exposure to NO2, PM2.5, and BC and tumours of the CNS. The PM elements were not consistently associated with CNS tumour incidence.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Neoplasias Encefálicas , Ozono , Humanos , Material Particulado/efectos adversos , Dióxido de Nitrógeno , Exposición a Riesgos Ambientales/efectos adversos , Contaminación del Aire/efectos adversos , Neoplasias Encefálicas/epidemiología , Neoplasias Encefálicas/etiología , Contaminantes Atmosféricos/efectos adversos
5.
Eur Respir J ; 61(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36822631

RESUMEN

BACKGROUND: The beneficial effect of improving air quality on lung function development remains understudied. We assessed associations of changes in ambient air pollution levels with lung function growth from childhood until young adulthood in a Swedish cohort study. METHODS: In the prospective birth cohort BAMSE (Children, Allergy, Environment, Stockholm, Epidemiology (in Swedish)), spirometry was conducted at the 8-year (2002-2004), 16-year (2011-2013) and 24-year (2016-2019) follow-ups. Participants with spirometry data at 8 years and at least one other measurement in subsequent follow-ups were included (1509 participants with 3837 spirometry measurements). Ambient air pollution levels (particulate matter with diameter ≤2.5 µm (PM2.5), particulate matter with diameter ≤10 µm (PM10), black carbon (BC) and nitrogen oxides (NO x )) at residential addresses were estimated using dispersion modelling. Linear mixed effect models were used to estimate associations between air pollution exposure change and lung function development. RESULTS: Overall, air pollution levels decreased progressively during the study period. For example, the median (interquartile range (IQR)) level of PM2.5 decreased from 8.24 (0.92) µg·m-3 during 2002-2004 to 5.21 (0.67) µg·m-3 during 2016-2019. At the individual level, for each IQR reduction of PM2.5 the lung function growth rate increased by 4.63 (95% CI 1.64-7.61) mL per year (p<0.001) for forced expiratory volume in 1 s and 9.38 (95% CI 4.76-14.00) mL per year (p<0.001) for forced vital capacity. Similar associations were also observed for reductions of BC and NO x . Associations persisted after adjustment for potential confounders and were not modified by asthma, allergic sensitisation, overweight, early-life air pollution exposure or dietary antioxidant intake. CONCLUSIONS: Long-term reduction of air pollution is associated with positive lung function development from childhood to young adulthood.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Niño , Humanos , Adolescente , Adulto Joven , Adulto , Estudios de Cohortes , Estudios Prospectivos , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Pulmón , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis
6.
Environ Res ; 231(Pt 1): 116077, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37156356

RESUMEN

BACKGROUND: Environmental noise is of increasing concern for public health. Quantification of associated health impacts is important for regulation and preventive strategies. AIM: To estimate the burden of disease (BoD) due to road traffic and railway noise in four Nordic countries and their capitals, in terms of DALYs (Disability-Adjusted Life Years), using comparable input data across countries. METHOD: Road traffic and railway noise exposure was obtained from the noise mapping conducted according to the Environmental Noise Directive (END) as well as nationwide noise exposure assessments for Denmark and Norway. Noise annoyance, sleep disturbance and ischaemic heart disease were included as the main health outcomes, using exposure-response functions from the WHO, 2018 systematic reviews. Additional analyses included stroke and type 2 diabetes. Country-specific DALY rates from the Global Burden of Disease (GBD) study were used as health input data. RESULTS: Comparable exposure data were not available on a national level for the Nordic countries, only for capital cities. The DALY rates for the capitals ranged from 329 to 485 DALYs/100,000 for road traffic noise and 44 to 146 DALY/100,000 for railway noise. Moreover, the DALY estimates for road traffic noise increased with up to 17% upon inclusion of stroke and diabetes. DALY estimates based on nationwide noise data were 51 and 133% higher than the END-based estimates, for Norway and Denmark, respectively. CONCLUSION: Further harmonization of noise exposure data is required for between-country comparisons. Moreover, nationwide noise models indicate that DALY estimates based on END considerably underestimate national BoD due to transportation noise. The health-related burden of traffic noise was comparable to that of air pollution, an established risk factor for disease in the GBD framework. Inclusion of environmental noise as a risk factor in the GBD is strongly encouraged.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ruido del Transporte , Humanos , Ruido del Transporte/efectos adversos , Factores de Riesgo , Países Escandinavos y Nórdicos/epidemiología , Costo de Enfermedad , Exposición a Riesgos Ambientales
7.
Environ Res ; 239(Pt 1): 117230, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37806476

RESUMEN

BACKGROUND: Air pollution is a growing concern worldwide, with significant impacts on human health. Multiple myeloma is a type of blood cancer with increasing incidence. Studies have linked air pollution exposure to various types of cancer, including leukemia and lymphoma, however, the relationship with multiple myeloma incidence has not been extensively investigated. METHODS: We pooled four European cohorts (N = 234,803) and assessed the association between residential exposure to nitrogen dioxide (NO2), fine particles (PM2.5), black carbon (BC), and ozone (O3) and multiple myeloma. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. RESULTS: During 4,415,817 person-years of follow-up (average 18.8 years), we observed 404 cases of multiple myeloma. The results of the fully adjusted linear analyses showed hazard ratios (95% confidence interval) of 0.99 (0.84, 1.16) per 10 µg/m³ NO2, 1.04 (0.82, 1.33) per 5 µg/m³ PM2.5, 0.99 (0.84, 1.18) per 0.5 10-5 m-1 BCE, and 1.11 (0.87, 1.41) per 10 µg/m³ O3. CONCLUSIONS: We did not observe an association between long-term ambient air pollution exposure and incidence of multiple myeloma.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Mieloma Múltiple , Humanos , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Estudios de Cohortes , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Mieloma Múltiple/inducido químicamente , Mieloma Múltiple/epidemiología , Dióxido de Nitrógeno/toxicidad , Dióxido de Nitrógeno/análisis , Material Particulado/análisis
8.
Environ Res ; 224: 115454, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36764429

RESUMEN

Background Colon cancer incidence is rising globally, and factors pertaining to urbanization have been proposed involved in this development. Traffic noise may increase colon cancer risk by causing sleep disturbance and stress, thereby inducing known colon cancer risk-factors, e.g. obesity, diabetes, physical inactivity, and alcohol consumption, but few studies have examined this. Objectives The objective of this study was to investigate the association between traffic noise and colon cancer (all, proximal, distal) in a pooled population of 11 Nordic cohorts, totaling 155,203 persons. Methods We identified residential address history and estimated road, railway, and aircraft noise, as well as air pollution, for all addresses, using similar exposure models across cohorts. Colon cancer cases were identified through national registries. We analyzed data using Cox Proportional Hazards Models, adjusting main models for harmonized sociodemographic and lifestyle data. Results During follow-up (median 18.8 years), 2757 colon cancer cases developed. We found a hazard ratio (HR) of 1.05 (95% confidence interval (CI): 0.99-1.10) per 10-dB higher 5-year mean time-weighted road traffic noise. In sub-type analyses, the association seemed confined to distal colon cancer: HR 1.06 (95% CI: 0.98-1.14). Railway and aircraft noise was not associated with colon cancer, albeit there was some indication in sub-type analyses that railway noise may also be associated with distal colon cancer. In interaction-analyses, the association between road traffic noise and colon cancer was strongest among obese persons and those with high NO2-exposure. Discussion A prominent study strength is the large population with harmonized data across eleven cohorts, and the complete address-history during follow-up. However, each cohort estimated noise independently, and only at the most exposed façade, which may introduce exposure misclassification. Despite this, the results of this pooled study suggest that traffic noise may be a risk factor for colon cancer, especially of distal origin.


Asunto(s)
Contaminación del Aire , Neoplasias del Colon , Ruido del Transporte , Humanos , Estudios de Cohortes , Factores de Riesgo , Exposición a Riesgos Ambientales/análisis , Dinamarca/epidemiología
9.
Am J Respir Crit Care Med ; 205(12): 1429-1439, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35258439

RESUMEN

Rationale: Ambient air pollution exposure has been linked to mortality from chronic cardiorespiratory diseases, while evidence on respiratory infections remains more limited. Objectives: We examined the association between long-term exposure to air pollution and pneumonia-related mortality in adults in a pool of eight European cohorts. Methods: Within the multicenter project ELAPSE (Effects of Low-Level Air Pollution: A Study in Europe), we pooled data from eight cohorts among six European countries. Annual mean residential concentrations in 2010 for fine particulate matter, nitrogen dioxide (NO2), black carbon (BC), and ozone were estimated using Europe-wide hybrid land-use regression models. We applied stratified Cox proportional hazard models to investigate the associations between air pollution and pneumonia, influenza, and acute lower respiratory infections (ALRI) mortality. Measurements and Main Results: Of 325,367 participants, 712 died from pneumonia and influenza combined, 682 from pneumonia, and 695 from ALRI during a mean follow-up of 19.5 years. NO2 and BC were associated with 10-12% increases in pneumonia and influenza combined mortality, but 95% confidence intervals included unity (hazard ratios, 1.12 [0.99-1.26] per 10 µg/m3 for NO2; 1.10 [0.97-1.24] per 0.5 10-5m-1 for BC). Associations with pneumonia and ALRI mortality were almost identical. We detected effect modification suggesting stronger associations with NO2 or BC in overweight, employed, or currently smoking participants compared with normal weight, unemployed, or nonsmoking participants. Conclusions: Long-term exposure to combustion-related air pollutants NO2 and BC may be associated with mortality from lower respiratory infections, but larger studies are needed to estimate these associations more precisely.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Gripe Humana , Neumonía , Adulto , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Humanos , Dióxido de Nitrógeno/efectos adversos , Material Particulado/efectos adversos , Material Particulado/análisis
10.
Br J Cancer ; 126(10): 1499-1507, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35173304

RESUMEN

BACKGROUND: The evidence linking ambient air pollution to bladder cancer is limited and mixed. METHODS: We assessed the associations of bladder cancer incidence with residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC), warm season ozone (O3) and eight PM2.5 elemental components (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) in a pooled cohort (N = 302,493). Exposures were primarily assessed based on 2010 measurements and back-extrapolated to the baseline years. We applied Cox proportional hazard models adjusting for individual- and area-level potential confounders. RESULTS: During an average of 18.2 years follow-up, 967 bladder cancer cases occurred. We observed a positive though statistically non-significant association between PM2.5 and bladder cancer incidence. Hazard Ratios (HR) were 1.09 (95% confidence interval (CI): 0.93-1.27) per 5 µg/m3 for 2010 exposure and 1.06 (95% CI: 0.99-1.14) for baseline exposure. Effect estimates for NO2, BC and O3 were close to unity. A positive association was observed with PM2.5 zinc (HR 1.08; 95% CI: 1.00-1.16 per 10 ng/m3). CONCLUSIONS: We found suggestive evidence of an association between long-term PM2.5 mass exposure and bladder cancer, strengthening the evidence from the few previous studies. The association with zinc in PM2.5 suggests the importance of industrial emissions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Neoplasias de la Vejiga Urinaria , Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Femenino , Humanos , Incidencia , Masculino , Dióxido de Nitrógeno , Material Particulado/efectos adversos , Enfermedades Raras , Neoplasias de la Vejiga Urinaria/epidemiología , Neoplasias de la Vejiga Urinaria/etiología , Zinc
11.
Environ Sci Technol ; 56(13): 9277-9290, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35737879

RESUMEN

We assessed mortality risks associated with source-specific fine particles (PM2.5) in a pooled European cohort of 323,782 participants. Cox proportional hazard models were applied to estimate mortality hazard ratios (HRs) for source-specific PM2.5 identified through a source apportionment analysis. Exposure to 2010 annual average concentrations of source-specific PM2.5 components was assessed at baseline residential addresses. The source apportionment resulted in the identification of five sources: traffic, residual oil combustion, soil, biomass and agriculture, and industry. In single-source analysis, all identified sources were significantly positively associated with increased natural mortality risks. In multisource analysis, associations with all sources attenuated but remained statistically significant with traffic, oil, and biomass and agriculture. The highest association per interquartile increase was observed for the traffic component (HR: 1.06; 95% CI: 1.04 and 1.08 per 2.86 µg/m3 increase) across five identified sources. On a 1 µg/m3 basis, the residual oil-related PM2.5 had the strongest association (HR: 1.13; 95% CI: 1.05 and 1.22), which was substantially higher than that for generic PM2.5 mass, suggesting that past estimates using the generic PM2.5 exposure response function have underestimated the potential clean air health benefits of reducing fossil-fuel combustion. Source-specific associations with cause-specific mortality were in general consistent with findings of natural mortality.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Estudios de Cohortes , Exposición a Riesgos Ambientales/análisis , Humanos , Material Particulado/análisis
12.
J Immunol ; 205(8): 2109-2116, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32887753

RESUMEN

Abs against phosphorylcholine (anti-PC) and Abs against malondialdehyde (anti-MDA) may be protective in chronic inflammation, like atherosclerosis and cardiovascular disease. It is not known how they develop early in life. Ab titers were measured using ELISA in healthy women (n = 105; born into life study) and their children. Plasma samples were collected from the mothers before conception and from the children at birth as well as at 1 and 2 y after birth. Extracted Abs were compared using a proteomics de novo sequencing approach. It was observed that children were born with very low levels of IgM anti-PC, whereas IgM anti-MDA was present at birth. Both IgM anti-PC and anti-MDA increased during the first 2 y of life, but IgM anti-PC in contrast to IgM anti-MDA was still significantly lower than in the mothers. IgG anti-PC decreased after 1 y but reached similar levels as mothers' after 2 y, whereas IgG anti-MDA reached similar levels as mothers' already after 1 y. Proteomics peptide sequencing analysis indicated large peptide sequence variation without specific clone expression during the early stage of life compared with the adult stage for which specific peptide sequences dominated. IgM anti-PC levels develop much slower than anti-MDA and are still relatively low at 2 y. We hypothesize that anti-PC is developed by a combination of preprogramming and exposure to the external world, in which infectious agents may play a role. For anti-MDA, preprogramming is likely to play a major role and at an earlier stage than for anti-PC.


Asunto(s)
Anticuerpos Antifosfolípidos/sangre , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Malondialdehído/sangre , Fosforilcolina/sangre , Adolescente , Adulto , Anticuerpos Antifosfolípidos/inmunología , Preescolar , Femenino , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , Lactante , Recién Nacido , Masculino , Malondialdehído/inmunología , Persona de Mediana Edad , Fosforilcolina/inmunología , Estudios Prospectivos
13.
Occup Environ Med ; 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35450950

RESUMEN

OBJECTIVES: To investigate the association between occupational noise exposure and stroke incidence in a pooled study of five Scandinavian cohorts (NordSOUND). METHODS: We pooled and harmonised data from five Scandinavian cohorts resulting in 78 389 participants. We obtained job data from national registries or questionnaires and recoded these to match a job-exposure matrix developed in Sweden, which specified the annual average daily noise exposure in five exposure classes (LAeq8h): <70, 70-74, 75-79, 80-84, ≥85 dB(A). We identified residential address history and estimated 1-year average road traffic noise at baseline. Using national patient and mortality registers, we identified 7777 stroke cases with a median follow-up of 20.2 years. Analyses were conducted using Cox proportional hazards models adjusting for individual and area-level potential confounders. RESULTS: Exposure to occupational noise at baseline was not associated with overall stroke in the fully adjusted models. For ischaemic stroke, occupational noise was associated with HRs (95% CI) of 1.08 (0.98 to 1.20), 1.09 (0.97 to 1.24) and 1.06 (0.92 to 1.21) in the 75-79, 80-84 and ≥85 dB(A) exposure groups, compared with <70 dB(A), respectively. In subanalyses using time-varying occupational noise exposure, we observed an indication of higher stroke risk among the most exposed (≥85 dB(A)), particularly when restricting analyses to people exposed to occupational noise within the last year (HR: 1.27; 95% CI: 0.99 to 1.63). CONCLUSIONS: We found no association between occupational noise and risk of overall stroke after adjustment for confounders. However, the non-significantly increased risk of ischaemic stroke warrants further investigation.

14.
Environ Res ; 208: 112760, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35065933

RESUMEN

Despite the growing popularity of electronic cigarettes (e-cigarettes) over the last decade, few epidemiological studies have examined the influence on respiratory health in young adulthood. The aim of this study was to identify factors associated with e-cigarette use in young adulthood in Sweden, and to examine associations between e-cigarette use and lung function, respiratory symptoms, and obesity. This cross-sectional study included 3055 young adults from Sweden and used questionnaire and clinical data obtained at age 22-25 years. The prevalence of current e-cigarette use was 3.9% (n = 120). Few participants reported daily (0.4%) or exclusive (0.8%) use of e-cigarettes. In a multivariable adjusted logistic regression model, e-cigarette use was significantly associated with male gender (OR:3.2; 95% CI:1.5-6.7) and cigarette smoking (OR:14.7; 95% CI:5.5-39.0 for daily smoking). Prevalence of cough (15.0% vs. 8.5%) and mucus production (22.3% vs. 14.8%) was significantly higher among e-cigarette users compared to non-users, while no difference in lung function was observed. In addition, the prevalence of overweight/obesity was higher among e-cigarette users compared to non-users (36.7% vs. 22.3% with BMI≥25 kg/m2). In conclusion, cigarette smokers and males used e-cigarette more often compared to females and non-cigarette smokers. Attention should be given to respiratory symptoms among e-cigarette users, although our results may be explained by the concurrent use of conventional cigarettes, as the group of exclusive e-cigarette users were too small to allow firm conclusions.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Vapeo , Adulto , Cohorte de Nacimiento , Estudios Transversales , Femenino , Humanos , Masculino , Obesidad/epidemiología , Suecia/epidemiología , Vapeo/epidemiología , Adulto Joven
15.
Environ Res ; 215(Pt 2): 114364, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36126692

RESUMEN

BACKGROUND AND AIM: Experimental studies show that short-term exposure to air pollution may alter cytokine concentrations. There is, however, a lack of epidemiological studies evaluating the association between long-term air pollution exposure and inflammation-related proteins in young children. Our objective was to examine whether air pollution exposure is associated with inflammation-related proteins during the first 2 years of life. METHODS: In a pooled analysis of two birth cohorts from Stockholm County (n = 158), plasma levels of 92 systemic inflammation-related proteins were measured by Olink Proseek Multiplex Inflammation panel at 6 months, 1 year and 2 years of age. Time-weighted average exposure to particles with an aerodynamic diameter of <10 µm (PM10), <2.5 µm (PM2.5), and nitrogen dioxide (NO2) at residential addresses from birth and onwards was estimated via validated dispersion models. Stratified by sex, longitudinal cross-referenced mixed effect models were applied to estimate the overall effect of preceding air pollution exposure on combined protein levels, "inflammatory proteome", over the first 2 years of life, followed by cross-sectional protein-specific bootstrapped quantile regression analysis. RESULTS: We identified significant longitudinal associations of inflammatory proteome during the first 2 years of life with preceding PM2.5 exposure, while consistent associations with PM10 and NO2 across ages were only observed among girls. Subsequent protein-specific analyses revealed significant associations of PM10 exposure with an increase in IFN-gamma and IL-12B in boys, and a decrease in IL-8 in girls at different percentiles of proteins levels, at age 6 months. Several inflammation-related proteins were also significantly associated with preceding PM10, PM2.5 and NO2 exposures, at ages 1 and 2 years, in a sex-specific manner. CONCLUSIONS: Ambient air pollution exposure influences inflammation-related protein levels already during early childhood. Our results also suggest age- and sex-specific differences in the impact of air pollution on children's inflammatory profiles.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Preescolar , Estudios Transversales , Citocinas , Exposición a Riesgos Ambientales/análisis , Femenino , Humanos , Lactante , Inflamación/inducido químicamente , Inflamación/epidemiología , Interleucina-8/análisis , Masculino , Dióxido de Nitrógeno/análisis , Dióxido de Nitrógeno/toxicidad , Material Particulado/análisis , Material Particulado/toxicidad , Proteoma
16.
Environ Res ; 215(Pt 2): 114385, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36154858

RESUMEN

BACKGROUND: Particulate matter (PM) is classified as a group 1 human carcinogen. Previous experimental studies suggest that particles in diesel exhaust induce oxidative stress, inflammation and DNA damage in kidney cells, but the evidence from population studies linking air pollution to kidney cancer is limited. METHODS: We pooled six European cohorts (N = 302,493) to assess the association of residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC), warm season ozone (O3) and eight elemental components of PM2.5 (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) with cancer of the kidney parenchyma. The main exposure model was developed for year 2010. We defined kidney parenchyma cancer according to the International Classification of Diseases 9th and 10th Revision codes 189.0 and C64. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. RESULTS: The participants were followed from baseline (1985-2005) to 2011-2015. A total of 847 cases occurred during 5,497,514 person-years of follow-up (average 18.2 years). Median (5-95%) exposure levels of NO2, PM2.5, BC and O3 were 24.1 µg/m3 (12.8-39.2), 15.3 µg/m3 (8.6-19.2), 1.6 10-5 m-1 (0.7-2.1), and 87.0 µg/m3 (70.3-97.4), respectively. The results of the fully adjusted linear analyses showed a hazard ratio (HR) of 1.03 (95% confidence interval [CI]: 0.92, 1.15) per 10 µg/m³ NO2, 1.04 (95% CI: 0.88, 1.21) per 5 µg/m³ PM2.5, 0.99 (95% CI: 0.89, 1.11) per 0.5 10-5 m-1 BCE, and 0.88 (95% CI: 0.76, 1.02) per 10 µg/m³ O3. We did not find associations between any of the elemental components of PM2.5 and cancer of the kidney parenchyma. CONCLUSION: We did not observe an association between long-term ambient air pollution exposure and incidence of kidney parenchyma cancer.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Neoplasias Renales , Ozono , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Carbono/análisis , Carcinógenos/análisis , Cobre/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Europa (Continente)/epidemiología , Humanos , Hierro/análisis , Riñón , Neoplasias Renales/inducido químicamente , Neoplasias Renales/epidemiología , Níquel , Dióxido de Nitrógeno/análisis , Dióxido de Nitrógeno/toxicidad , Ozono/análisis , Material Particulado/análisis , Material Particulado/toxicidad , Potasio/análisis , Silicio , Hollín/análisis , Azufre/análisis , Vanadio , Emisiones de Vehículos/análisis , Zinc/análisis
17.
Acta Paediatr ; 111(9): 1788-1794, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35582781

RESUMEN

AIM: To assess associations between air pollution exposure and infant lung function. METHODS: Healthy infants from Stockholm were recruited to two cohorts (n = 99 and n = 78). Infant spirometry included plethysmography and raised volume forced expiratory flows. In pooled analyses, lung function at ~6 months of age was related to time-weighted average air pollution levels at residential addresses from birth until the lung function test. The pollutants included particulate matter with an aerodynamic diameter < 10 µm (PM10 ) or <2.5 µm and nitrogen dioxide. RESULTS: There were significant inverse relations between air pollution exposure during infancy and forced expiratory volume at 0.5 s (FEV0.5 ) as well as forced vital capacity (FVC) for all pollutants. For example, the decline was 10.1 ml (95% confidence interval 1.3-18.8) and 10.3 ml (0.5-20.1) in FEV0.5 and FVC, respectively, for an interquartile increment of 5.3 µg/m3 in PM10 . Corresponding associations for minute ventilation and functional residual capacity were 43.3 ml/min (-9.75-96.3) and 0.84 ml (-4.14-5.82). CONCLUSIONS: Air pollution exposure was associated with impaired infant lung function measures related to airway calibre and lung volume, suggesting that comparatively low levels of air pollution negatively affect lung function in early life.


Asunto(s)
Contaminación del Aire , Contaminantes Ambientales , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/análisis , Volumen Espiratorio Forzado , Humanos , Lactante , Pulmón , Material Particulado/efectos adversos , Material Particulado/análisis
18.
Int J Cancer ; 149(11): 1887-1897, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34278567

RESUMEN

Particulate matter air pollution and diesel engine exhaust have been classified as carcinogenic for lung cancer, yet few studies have explored associations with liver cancer. We used six European adult cohorts which were recruited between 1985 and 2005, pooled within the "Effects of low-level air pollution: A study in Europe" (ELAPSE) project, and followed for the incidence of liver cancer until 2011 to 2015. The annual average exposure to nitrogen dioxide (NO2 ), particulate matter with diameter <2.5 µm (PM2.5 ), black carbon (BC), warm-season ozone (O3 ), and eight elemental components of PM2.5 (copper, iron, zinc, sulfur, nickel, vanadium, silicon, and potassium) were estimated by European-wide hybrid land-use regression models at participants' residential addresses. We analyzed the association between air pollution and liver cancer incidence by Cox proportional hazards models adjusting for potential confounders. Of 330 064 cancer-free adults at baseline, 512 developed liver cancer during a mean follow-up of 18.1 years. We observed positive linear associations between NO2 (hazard ratio, 95% confidence interval: 1.17, 1.02-1.35 per 10 µg/m3 ), PM2.5 (1.12, 0.92-1.36 per 5 µg/m3 ), and BC (1.15, 1.00-1.33 per 0.5 10-5 /m) and liver cancer incidence. Associations with NO2 and BC persisted in two-pollutant models with PM2.5 . Most components of PM2.5 were associated with the risk of liver cancer, with the strongest associations for sulfur and vanadium, which were robust to adjustment for PM2.5 or NO2 . Our study suggests that ambient air pollution may increase the risk of liver cancer, even at concentrations below current EU standards.


Asunto(s)
Contaminación del Aire/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Neoplasias Hepáticas/etiología , Adulto , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/estadística & datos numéricos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Europa (Continente)/epidemiología , Femenino , Humanos , Incidencia , Neoplasias Hepáticas/epidemiología , Masculino , Persona de Mediana Edad , Tamaño de la Partícula , Material Particulado/toxicidad , Modelos de Riesgos Proporcionales
19.
Thorax ; 76(5): 503-507, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33184098

RESUMEN

We aimed to determine prevalence and early-life risk factors for reversible and irreversible airflow limitation in young adults from the general population. Among young adults in their 20s, the prevalence was 5.3% for reversible airflow limitation and 2.0% for irreversible airflow limitation. While parental asthma was the only risk factor for development of reversible airflow limitation, the risk factors for development of irreversible airflow limitation were current asthma, childhood respiratory tract infections and asthma, and exposure to air pollution.


Asunto(s)
Volumen Espiratorio Forzado/fisiología , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Capacidad Vital/fisiología , Salud Global , Humanos , Prevalencia , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Factores de Riesgo , Espirometría , Adulto Joven
20.
Eur Respir J ; 57(3)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33184115

RESUMEN

BACKGROUND: Chronic bronchitis is associated with substantial morbidity among elderly adults, but little is known about its prevalence and risk factors in young adults. Our aim was to assess the prevalence and early-life risk factors for chronic bronchitis in young adults. METHODS: Questionnaire data and clinical measures from the 24-year follow-up of the Swedish BAMSE (Child (Barn), Allergy, Milieu, Stockholm, Epidemiological) cohort were used. We assessed chronic bronchitis (CB) as the combination of cough and mucus production in the morning during winter. Environmental and clinical data from birth and onwards were used for analyses of risk factors. RESULTS: At the 24-year follow-up, 75% (n=3064) participants completed the questionnaire and 2030 performed spirometry. The overall prevalence of CB was 5.5% (n=158) with similar estimates in males and females. 49% of CB cases experienced more than three self-reported respiratory infections in the past year compared to 18% in non-CB subjects (p<0.001), and 37% of cases were current smokers (versus 19% of non-CB cases). Statistically significant lower post-bronchodilator forced expiratory volume in 1 s/forced vital capacity were observed in CB compared to non-CB subjects (mean z-score -0.06 versus 0.13, p=0.027). Daily smoking (adjusted (a)OR 3.85, p<0.001), air pollution exposure (black carbon at ages 1-4 years aOR 1.71 per 1 µg·m-3 increase, p=0.009) and exclusive breastfeeding for ≤4 months (aOR 0.66, p=0.044) were associated with CB. CONCLUSION: Chronic bronchitis in young adults is associated with recurrent respiratory infections. Besides smoking, our results support the role of early-life exposures, such as air pollution and exclusive breastfeeding, for respiratory health later in life.


Asunto(s)
Bronquitis Crónica , Bronquitis , Anciano , Bronquitis/epidemiología , Bronquitis Crónica/epidemiología , Niño , Preescolar , Femenino , Volumen Espiratorio Forzado , Humanos , Lactante , Masculino , Factores de Riesgo , Fumar , Espirometría , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA