Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 10(8): e0004848, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27508930

RESUMEN

The immunomodulatory properties of lipophosphoglycans (LPG) from New World species of Leishmania have been assessed in Leishmania infantum and Leishmania braziliensis, the causative agents of visceral and cutaneous leishmaniasis, respectively. This glycoconjugate is highly polymorphic among species with variation in sugars that branch off the conserved Gal(ß1,4)Man(α1)-PO4 backbone of repeat units. Here, the immunomodulatory activity of LPGs from Leishmania amazonensis, the causative agent of diffuse cutaneous leishmaniasis, was evaluated in two strains from Brazil. One strain (PH8) was originally isolated from the sand fly and the other (Josefa) was isolated from a human case. The ability of purified LPGs from both strains was investigated during in vitro interaction with peritoneal murine macrophages and CHO cells and in vivo infection with Lutzomyia migonei. In peritoneal murine macrophages, the LPGs from both strains activated TLR4. Both LPGs equally activate MAPKs and the NF-κB inhibitor p-IκBα, but were not able to translocate NF-κB. In vivo experiments with sand flies showed that both stains were able to sustain infection in L. migonei. A preliminary biochemical analysis indicates intraspecies variation in the LPG sugar moieties. However, they did not result in different activation profiles of the innate immune system. Also those polymorphisms did not affect infectivity to the sand fly.


Asunto(s)
Glicoesfingolípidos/química , Glicoesfingolípidos/inmunología , Interacciones Huésped-Parásitos , Leishmania mexicana/química , Macrófagos Peritoneales/inmunología , Psychodidae/parasitología , Receptor Toll-Like 4/inmunología , Animales , Brasil , Células CHO , Cricetulus , Citocinas/inmunología , Glicoesfingolípidos/aislamiento & purificación , Interacciones Huésped-Parásitos/inmunología , Humanos , Inmunidad Innata/efectos de los fármacos , Leishmaniasis Cutánea/parasitología , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/efectos de los fármacos , Receptor Toll-Like 4/genética
2.
Parasitol Int ; 64(4): 32-5, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25619843

RESUMEN

In this work, some aspects of the glycobiology of Leishmania shawi were examined, as it is a causative agent of cutaneous leishmaniasis in the New World. Additionally, the interaction of L. shawi's main glycoconjugates [lipophosphoglycan (LPG) and glycoinositolphospholipids (GIPLs)] with macrophages was evaluated in vitro. L. shawi LPG was devoid of side-chains in its repeat units, whereas monosaccharide analysis showed that GIPLs were suggestive of mannose-rich (type I or hybrid). In order to evaluate the biological roles of those molecules, BALB/c resident peritoneal macrophages were incubated with these glycoconjugates for 24h, and the levels of nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-12p70 and IL-10, were determined. In general, the GIPLs exhibited a greater proinflammatory role than the LPGs did. However, for the first time, the GIPLs from this species were able to trigger the production of IL-10, an anti-inflammatory cytokine. In conclusion, L. shawi glycoconjugates were able to interact with the innate immune compartment. These data reinforce the role of parasite glycoconjugates during parasite and host cell interactions.


Asunto(s)
Glicoconjugados/inmunología , Glicoesfingolípidos/inmunología , Leishmania/química , Leishmania/inmunología , Macrófagos Peritoneales/inmunología , Fosfatidilinositoles/inmunología , Animales , Glicoesfingolípidos/química , Interacciones Huésped-Parásitos , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Ratones Endogámicos BALB C , Óxido Nítrico/metabolismo , Fosfatidilinositoles/química , Factor de Necrosis Tumoral alfa/metabolismo
3.
J Extracell Vesicles ; 4: 28734, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26613751

RESUMEN

Trypomastigote forms of Trypanosoma cruzi, the causative agent of Chagas Disease, shed extracellular vesicles (EVs) enriched with glycoproteins of the gp85/trans-sialidase (TS) superfamily and other α-galactosyl (α-Gal)-containing glycoconjugates, such as mucins. Here, purified vesicles from T. cruzi strains (Y, Colombiana, CL-14 and YuYu) were quantified according to size, intensity and concentration. Qualitative analysis revealed differences in their protein and α-galactosyl contents. Later, those polymorphisms were evaluated in the modulation of immune responses (innate and in the chronic phase) in C57BL/6 mice. EVs isolated from YuYu and CL-14 strains induced in macrophages higher levels of proinflammatory cytokines (TNF-α and IL-6) and nitric oxide via TLR2. In general, no differences were observed in MAPKs activation (p38, JNK and ERK 1/2) after EVs stimulation. In splenic cells derived from chronically infected mice, a different modulation pattern was observed, where Colombiana (followed by Y strain) EVs were more proinflammatory. This modulation was independent of the T. cruzi strain used in the mice infection. To test the functional importance of this modulation, the expression of intracellular cytokines after in vitro exposure was evaluated using EVs from YuYu and Colombiana strains. Both EVs induced cytokine production with the appearance of IL-10 in the chronically infected mice. A high frequency of IL-10 in CD4+ and CD8+ T lymphocytes was observed. A mixed profile of cytokine induction was observed in B cells with the production of TNF-α and IL-10. Finally, dendritic cells produced TNF-α after stimulation with EVs. Polymorphisms in the vesicles surface may be determinant in the immunopathologic events not only in the early steps of infection but also in the chronic phase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA