Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ecol Inform ; 70: None, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36105745

RESUMEN

With new technological advancements and increasing demands of open data in environmental sciences, the requirements for data are increasing in a variety of ways. Having machine and human readable documentation about environmental research and monitoring sites available online is one of them. The Dynamic Ecological Information Management System - Site and Dataset Registry (DEIMS-SDR, https://www.deims.org/) is a research and monitoring site registry that allows the description of in-situ observation or experimental sites, generating persistent, unique and resolvable identifiers for each site. The aim of DEIMS-SDR is to collect site information in a catalogue describing a wide range of sites across the globe, providing information including each site's location, ecosystems, facilities, measured parameters and research themes and enabling that standardised information to be openly available. This article describes the outcomes of the revision of its data model, the conceptual considerations behind it and how it is implemented. These conceptual considerations also encompass the definition of what we call the "onion model of site data interoperability" - a fundamental concept for the design of site data models against the backdrop of data interoperability. Furthermore, we illustrate the capabilities of the revised data model and provide an overview of common data formats for the description of sites, current initiatives driving the harmonisation of descriptions and the outlook of future developments.

2.
Sci Total Environ ; 624: 968-978, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29275260

RESUMEN

The challenges posed by climate and land use change are increasingly complex, with ever-increasing and accelerating impacts on the global environmental system. The establishment of an internationally harmonized, integrated, and long-term operated environmental monitoring infrastructure is one of the major challenges of modern environmental research. Increased efforts are currently being made in Europe to establish such a harmonized pan-European observation infrastructure, and the European network of Long-Term Ecological Research sites - LTER-Europe - is of particular importance. By evaluating 477 formally accredited LTER-Europe sites, this study gives an overview of the current distribution of these infrastructures and the present condition of long-term environmental research in Europe. We compiled information on long-term biotic and abiotic observations and measurements and examined the representativeness in terms of continental biogeographical and socio-ecological gradients. The results were used to identify gaps in both measurements and coverage of the aforementioned gradients. Furthermore, an overview of the current state of the LTER-Europe observation strategies is given. The latter forms the basis for investigating the comparability of existing LTER-Europe monitoring concepts both in terms of observational design as well as in terms of the scope of the environmental compartments, variables and properties covered.


Asunto(s)
Ecología , Monitoreo del Ambiente , Investigación , Clima , Ecosistema , Europa (Continente)
3.
Biol Rev Camb Philos Soc ; 93(1): 600-625, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28766908

RESUMEN

Much biodiversity data is collected worldwide, but it remains challenging to assemble the scattered knowledge for assessing biodiversity status and trends. The concept of Essential Biodiversity Variables (EBVs) was introduced to structure biodiversity monitoring globally, and to harmonize and standardize biodiversity data from disparate sources to capture a minimum set of critical variables required to study, report and manage biodiversity change. Here, we assess the challenges of a 'Big Data' approach to building global EBV data products across taxa and spatiotemporal scales, focusing on species distribution and abundance. The majority of currently available data on species distributions derives from incidentally reported observations or from surveys where presence-only or presence-absence data are sampled repeatedly with standardized protocols. Most abundance data come from opportunistic population counts or from population time series using standardized protocols (e.g. repeated surveys of the same population from single or multiple sites). Enormous complexity exists in integrating these heterogeneous, multi-source data sets across space, time, taxa and different sampling methods. Integration of such data into global EBV data products requires correcting biases introduced by imperfect detection and varying sampling effort, dealing with different spatial resolution and extents, harmonizing measurement units from different data sources or sampling methods, applying statistical tools and models for spatial inter- or extrapolation, and quantifying sources of uncertainty and errors in data and models. To support the development of EBVs by the Group on Earth Observations Biodiversity Observation Network (GEO BON), we identify 11 key workflow steps that will operationalize the process of building EBV data products within and across research infrastructures worldwide. These workflow steps take multiple sequential activities into account, including identification and aggregation of various raw data sources, data quality control, taxonomic name matching and statistical modelling of integrated data. We illustrate these steps with concrete examples from existing citizen science and professional monitoring projects, including eBird, the Tropical Ecology Assessment and Monitoring network, the Living Planet Index and the Baltic Sea zooplankton monitoring. The identified workflow steps are applicable to both terrestrial and aquatic systems and a broad range of spatial, temporal and taxonomic scales. They depend on clear, findable and accessible metadata, and we provide an overview of current data and metadata standards. Several challenges remain to be solved for building global EBV data products: (i) developing tools and models for combining heterogeneous, multi-source data sets and filling data gaps in geographic, temporal and taxonomic coverage, (ii) integrating emerging methods and technologies for data collection such as citizen science, sensor networks, DNA-based techniques and satellite remote sensing, (iii) solving major technical issues related to data product structure, data storage, execution of workflows and the production process/cycle as well as approaching technical interoperability among research infrastructures, (iv) allowing semantic interoperability by developing and adopting standards and tools for capturing consistent data and metadata, and (v) ensuring legal interoperability by endorsing open data or data that are free from restrictions on use, modification and sharing. Addressing these challenges is critical for biodiversity research and for assessing progress towards conservation policy targets and sustainable development goals.


Asunto(s)
Distribución Animal/fisiología , Biodiversidad , Monitoreo del Ambiente/métodos , Animales , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA