Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Cell Sci ; 132(7)2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30814334

RESUMEN

AMP-activated kinase (AMPK) and target of rapamycin (TOR) signalling coordinate cell growth, proliferation, metabolism and cell survival with the nutrient environment of cells. The poor vasculature and nutritional stress experienced by cells in solid tumours raises the question: how do they assimilate sufficient nutrients to survive? Here, we show that human and fission yeast cells import ATP and AMP from their external environment to regulate AMPK and TOR signalling. Exposure of fission yeast (Schizosaccharomyces pombe) and human cells to external AMP impeded cell growth; however, in yeast this restraining impact required AMPK. In contrast, external ATP rescued the growth defect of yeast mutants with reduced TORC1 signalling; furthermore, exogenous ATP transiently enhanced TORC1 signalling in both yeast and human cell lines. Addition of the PANX1 channel inhibitor probenecid blocked ATP import into human cell lines suggesting that this channel may be responsible for both ATP release and uptake in mammals. In light of these findings, it is possible that the higher extracellular ATP concentration reported in solid tumours is both scavenged and recognized as an additional energy source beneficial for cell growth.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfato/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Transducción de Señal , Proteínas Quinasas Activadas por AMP/genética , Proliferación Celular , Conexinas/metabolismo , Regulación Fúngica de la Expresión Génica , Células HEK293 , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Proteínas del Tejido Nervioso/metabolismo , Fosforilación , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Estrés Fisiológico
2.
EMBO Rep ; 18(12): 2197-2218, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29079657

RESUMEN

Gene expression regulation is essential for cells to adapt to changes in their environment. Co-activator complexes have well-established roles in transcriptional regulation, but less is known about how they sense and respond to signaling cues. We have previously shown that, in fission yeast, one such co-activator, the SAGA complex, controls gene expression and the switch from proliferation to differentiation in response to nutrient availability. Here, using a combination of genetic, biochemical, and proteomic approaches, we show that SAGA responds to nutrients through the differential phosphorylation of its Taf12 component, downstream of both the TORC1 and TORC2 pathways. Taf12 phosphorylation increases early upon starvation and is controlled by the opposing activities of the PP2A phosphatase, which is activated by TORC1, and the TORC2-activated Gad8AKT kinase. Mutational analyses suggest that Taf12 phosphorylation prevents cells from committing to differentiation until starvation reaches a critical level. Overall, our work reveals that SAGA is a direct target of nutrient-sensing pathways and has uncovered a mechanism by which TORC1 and TORC2 converge to control gene expression and cell fate decisions.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Citoplasma/metabolismo , Mutación , Fosforilación/genética , Proteómica/métodos , Proteínas de Schizosaccharomyces pombe/metabolismo , Transducción de Señal/genética , Transactivadores/genética , Transcripción Genética
3.
PLoS Genet ; 12(5): e1006041, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27191590

RESUMEN

Target of Rapamycin (TOR) signalling allows eukaryotic cells to adjust cell growth in response to changes in their nutritional and environmental context. The two distinct TOR complexes (TORC1/2) localise to the cell's internal membrane compartments; the endoplasmic reticulum (ER), Golgi apparatus and lysosomes/vacuoles. Here, we show that Ppk32, a SCYL family pseudo-kinase, is a novel regulator of TOR signalling. The absence of ppk32 expression confers resistance to TOR inhibition. Ppk32 inhibition of TORC1 is critical for cell survival following Brefeldin A (BFA) induced stress. Treatment of wild type cells with either the TORC1 specific inhibitor rapamycin or the general TOR inhibitor Torin1 confirmed that a reduction in TORC1 activity promoted recovery from BFA induced stress. Phosphorylation of Ppk32 on two residues that are conserved within the SCYL pseudo-kinase family are required for this TOR inhibition. Phosphorylation on these sites controls Ppk32 protein levels and sensitivity to BFA. BFA induced ER stress does not account for the response to BFA that we report here, however BFA is also known to induce Golgi stress and impair traffic to lysosomes. In summary, Ppk32 reduce TOR signalling in response to BFA induced stress to support cell survival.


Asunto(s)
Complejos Multiproteicos/genética , Transporte de Proteínas/genética , Estrés Fisiológico/genética , Serina-Treonina Quinasas TOR/genética , Brefeldino A/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/genética , Lisosomas/efectos de los fármacos , Lisosomas/genética , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Fosforilación , Transporte de Proteínas/efectos de los fármacos , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo , Sirolimus/metabolismo , Estrés Fisiológico/efectos de los fármacos , Vacuolas/efectos de los fármacos , Vacuolas/genética
4.
J Cell Sci ; 129(13): 2613-24, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27206859

RESUMEN

The timing of cell division is controlled by the coupled regulation of growth and division. The target of rapamycin (TOR) signalling network synchronises these processes with the environmental setting. Here, we describe a novel interaction of the fission yeast TOR complex 2 (TORC2) with the cytokinetic actomyosin ring (CAR), and a novel role for TORC2 in regulating the timing and fidelity of cytokinesis. Disruption of TORC2 or its localisation results in defects in CAR morphology and constriction. We provide evidence that the myosin II protein Myp2 and the myosin V protein Myo51 play roles in recruiting TORC2 to the CAR. We show that Myp2 and TORC2 are co-dependent upon each other for their normal localisation to the cytokinetic machinery. We go on to show that TORC2-dependent phosphorylation of actin-capping protein 1 (Acp1, a known regulator of cytokinesis) controls CAR stability, modulates Acp1-Acp2 (the equivalent of the mammalian CAPZA-CAPZB) heterodimer formation and is essential for survival upon stress. Thus, TORC2 localisation to the CAR, and TORC2-dependent Acp1 phosphorylation contributes to timely control and the fidelity of cytokinesis and cell division.


Asunto(s)
Proteínas de Capping de la Actina/genética , Citocinesis/genética , Complejos Multiproteicos/genética , Cadenas Pesadas de Miosina/genética , Miosinas/genética , Proteínas de Schizosaccharomyces pombe/genética , Serina-Treonina Quinasas TOR/genética , Proteínas de Capping de la Actina/metabolismo , Actinas/genética , Actomiosina/genética , Actomiosina/metabolismo , División Celular/genética , Diana Mecanicista del Complejo 2 de la Rapamicina , Complejos Multiproteicos/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miosinas/metabolismo , Fosforilación , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
5.
J Cell Sci ; 127(Pt 6): 1346-56, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24424027

RESUMEN

The target of rapamycin (TOR) kinase regulates cell growth and division. Rapamycin only inhibits a subset of TOR activities. Here we show that in contrast to the mild impact of rapamycin on cell division, blocking the catalytic site of TOR with the Torin1 inhibitor completely arrests growth without cell death in Schizosaccharomyces pombe. A mutation of the Tor2 glycine residue (G2040D) that lies adjacent to the key Torin-interacting tryptophan provides Torin1 resistance, confirming the specificity of Torin1 for TOR. Using this mutation, we show that Torin1 advanced mitotic onset before inducing growth arrest. In contrast to TOR inhibition with rapamycin, regulation by either Wee1 or Cdc25 was sufficient for this Torin1-induced advanced mitosis. Torin1 promoted a Polo and Cdr2 kinase-controlled drop in Wee1 levels. Experiments in human cell lines recapitulated these yeast observations: mammalian TOR (mTOR) was inhibited by Torin1, Wee1 levels declined and mitotic commitment was advanced in HeLa cells. Thus, the regulation of the mitotic inhibitor Wee1 by TOR signalling is a conserved mechanism that helps to couple cell cycle and growth controls.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Mitosis/efectos de los fármacos , Naftiridinas/farmacología , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/crecimiento & desarrollo , Secuencia de Aminoácidos , Dominio Catalítico , Muerte Celular , Resistencia a Medicamentos , Puntos de Control de la Fase G1 del Ciclo Celular , Células HeLa , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Datos de Secuencia Molecular , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/metabolismo , Mutagénesis Sitio-Dirigida , Fosfatidilinositol 3-Quinasas/metabolismo , Transporte de Proteínas , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/enzimología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo
6.
J Cell Sci ; 126(Pt 15): 3324-32, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23690545

RESUMEN

In all eukaryotes tight control of mitogen-activated protein kinase (MAPK) activity plays an important role in modulating intracellular signalling in response to changing environments. The fission yeast MAPK Sty1 (also known as Spc1 or Phh1) is highly activated in response to a variety of external stresses. To avoid segregation of damaged organelles or chromosomes, strong Sty1 activation transiently blocks mitosis and cell division until such stresses have been dealt with. MAPK phosphatases dephosphorylate Sty1 to reduce kinase activity. Therefore, tight control of MAPK phosphatases is central for stress adaptation and for cell division to resume. In contrast to Pyp1, the fission yeast Pyp2 MAPK phosphatase is under environmental control. Pyp2 has a unique sequence (the linker region) between the catalytic domain and the N-terminal MAPK-binding site. Here we show that the Pyp2 linker region is a destabilisation domain. Furthermore, the linker region is highly phosphorylated to increase Pyp2 protein stability and this phosphorylation is Sty1 dependent. Our data suggests that Sty1 activation promotes Pyp2 phosphorylation to increase the stability of the phosphatase. This MAPK-dependent Pyp2 stabilisation allows cells to attenuate MAPK signalling and resume cell division, once stresses have been dealt with.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/genética , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/genética , Datos de Secuencia Molecular , Fosforilación , Proteínas Tirosina Fosfatasas/genética , Proteínas de Schizosaccharomyces pombe/genética , Transducción de Señal
7.
Nat Cell Biol ; 9(11): 1263-72, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17952063

RESUMEN

The coupling of growth to cell cycle progression allows eukaryotic cells to divide at particular sizes depending on nutrient availability. In fission yeast, this coupling involves the Spc1/Sty1 mitogen-activated protein kinase (MAPK) pathway working through Polo kinase recruitment to the spindle pole bodies (SPBs). Here we report that changes in nutrients influence TOR signalling, which modulates Spc1/Sty1 activity. Rapamycin-induced inhibition of TOR signalling advanced mitotic onset, mimicking the reduction in cell size at division seen after shifts to poor nitrogen sources. Gcn2, an effector of TOR signalling and modulator of translation, regulates the Pyp2 phosphatase that in turn modulates Spc1/Sty1 activity. Rapamycin- or nutrient-induced stimulation of Spc1/Sty1 activity promotes Polo kinase SPB recruitment and Cdc2 activation to advance mitotic onset. This advanced mitotic onset is abolished in cells depleted of Gcn2, Pyp2, or Spc1/Sty1 or on blockage of Spc1/Sty1-dependent Polo SPB recruitment. Therefore, TOR signalling modulates mitotic onset through the stress MAPK pathway via the Pyp2 phosphatase.


Asunto(s)
Proteína Quinasa CDC2/fisiología , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/fisiología , Mitosis , Proteínas Quinasas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas de Schizosaccharomyces pombe/fisiología , Células Cultivadas , Mitosis/efectos de los fármacos , Schizosaccharomyces/citología , Transducción de Señal/fisiología , Sirolimus/farmacología
8.
Cancers (Basel) ; 16(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38893174

RESUMEN

BACKGROUND: Metformin is a first-line therapy for type 2 diabetes as it disrupts cellular metabolism. Despite the association between metformin and lower cancer incidence, the anti-tumour activity of the drug in colorectal cancer (CRC) is incompletely understood. This study identifies underlying molecular mechanisms by which metformin slows colorectal cancer cell proliferation by investigating metformin-associated microRNA (miRNA) and target gene pairs implicated in signalling pathways. METHODS: The present study analysed changes in miRNAs and the coding transcriptome in CRC cells treated with a sublethal dose of metformin, followed by the contextual validation of potential miRNA-target gene pairs. RESULTS: Analyses of small RNA and transcriptome sequencing data revealed 104 miRNAs and 1221 mRNAs to be differentially expressed in CRC cells treated with metformin for 72 h. Interaction networks between differentially expressed miRNAs and putative target mRNAs were identified. Differentially expressed genes were mainly implicated in metabolism and signalling processes, such as the PI3K-Akt and MAPK/ERK pathways. Further validation of potential miRNA-target mRNA pairs revealed that metformin induced miR-2110 and miR-132-3p to target PIK3R3 and, consequently, regulate CRC cell proliferation, cell cycle progression and the PI3K-Akt signalling pathway. Metformin also induced miR-222-3p and miR-589-3p, which directly target STMN1 to inhibit CRC cell proliferation and cell cycle progression. CONCLUSIONS: This study identified novel changes in the coding transcriptome and small non-coding RNAs associated with metformin treatment of CRC cells. Integration of these datasets highlighted underlying mechanisms by which metformin impedes cell proliferation in CRC. Importantly, it identified the post-transcriptional regulation of specific genes that impact both metabolism and cell proliferation.

9.
J Cell Sci ; 124(Pt 20): 3441-9, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21965528

RESUMEN

The coordination of cell division and growth in response to changes in nutrient supply is mediated by TOR signalling. In fission yeast, increased nutrient provision transiently delays mitotic onset without affecting growth. The result is an increase in cell size at division. We find that this block to cell division relies upon TOR and MAPK signalling and that mitotic entry during recovery from this block is regulated by the Aurora kinase Ark1. We show that Ark1 phosphorylation of polo kinase Plo1 within the linker region between the kinase domain and polo boxes drives Plo1 onto the spindle poles where it promotes mitosis. Interestingly, the use of Ark1 to phosphorylate Plo1 and promote mitotic entry is dependent on the environment.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiología , Huso Acromático/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Secuencias de Aminoácidos/genética , Animales , Aurora Quinasas , Puntos de Control del Ciclo Celular , División Celular , Procesos de Crecimiento Celular , Secuencia Conservada/genética , Evolución Molecular , Humanos , Sistema de Señalización de MAP Quinasas , Mitosis , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Proteínas de Schizosaccharomyces pombe/genética , Xenopus
10.
Open Biol ; 13(4): 230021, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37042113

RESUMEN

Expression and activity of the AMP-activated protein kinase (AMPK) α1 catalytic subunit of the heterotrimeric kinase significantly correlates with poor outcome for colorectal cancer patients. Hence there is considerable interest in uncovering signalling vulnerabilities arising from this oncogenic elevation of AMPKα1 signalling. We have therefore attenuated mammalian target of rapamycin (mTOR) control of AMPKα1 to generate a mutant colorectal cancer in which AMPKα1 signalling is elevated because AMPKα1 serine 347 cannot be phosphorylated by mTORC1. The elevated AMPKα1 signalling in this HCT116 α1.S347A cell line confers hypersensitivity to growth inhibition by metformin. Complementary chemical approaches confirmed this relationship in both HCT116 and the genetically distinct HT29 colorectal cells, as AMPK activators imposed vulnerability to growth inhibition by metformin in both lines. Growth inhibition by metformin was abolished when AMPKα1 kinase was deleted. We conclude that elevated AMPKα1 activity modifies the signalling architecture in such a way that metformin treatment compromises cell proliferation. Not only does this mutant HCT116 AMPKα1-S347A line offer an invaluable resource for future studies, but our findings suggest that a robust biomarker for chronic AMPKα1 activation for patient stratification could herald a place for the well-tolerated drug metformin in colorectal cancer therapy.


Asunto(s)
Neoplasias Colorrectales , Metformina , Humanos , Metformina/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Fosforilación , Transducción de Señal
11.
Life Sci Alliance ; 5(5)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35121625

RESUMEN

Cells respond to changing nutrient environments by adjusting the abundance of surface nutrient transporters and receptors. This can be achieved by modulating ubiquitin-dependent endocytosis, which in part is regulated by the NEDD4 family of E3 ligases. Here we report novel regulation of Pub1, a fission yeast Schizosaccharomyces pombe member of the NEDD4-family of E3 ligases. We show that nitrogen stress inhibits Pub1 function, thereby increasing the abundance of the amino acid transporter Aat1 at the plasma membrane and enhancing sensitivity to the toxic arginine analogue canavanine. We show that TOR complex 2 (TORC2) signalling negatively regulates Pub1, thus TORC2 mutants under nutrient stress have decreased Aat1 at the plasma membrane and are resistant to canavanine. Inhibition of TORC2 signalling increases Pub1 phosphorylation, and this is dependent on Gsk3 activity. Addition of the Tor inhibitor Torin1 increases phosphorylation of Pub1 at serine 199 (S199) by 2.5-fold, and Pub1 protein levels in S199A phospho-ablated mutants are reduced. S199 is conserved in NEDD4 and is located immediately upstream of a WW domain required for protein interaction. Together, we describe how the major TORC2 nutrient-sensing signalling network regulates environmental control of Pub1 to modulate the abundance of nutrient transporters.


Asunto(s)
Ligasas de Carbono-Nitrógeno/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Ligasas de Carbono-Nitrógeno/genética , Glucógeno Sintasa Quinasa 3/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo
12.
Sci Rep ; 12(1): 2889, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35190587

RESUMEN

Metformin inhibits oxidative phosphorylation and can be used to dissect metabolic pathways in colorectal cancer (CRC) cells. CRC cell proliferation is inhibited by metformin in a dose dependent manner. MicroRNAs that regulate metabolism could be identified by their ability to alter the effect of metformin on CRC cell proliferation. An unbiased high throughput functional screen of a synthetic micoRNA (miRNA) library was used to identify miRNAs that impact the metformin response in CRC cells. Experimental validation of selected hits identified miRNAs that sensitize CRC cells to metformin through modulation of proliferation, apoptosis, cell-cycle and direct metabolic disruption. Among eight metformin sensitizing miRNAs identified by functional screening, miR-676-3p had both pro-apoptotic and cell cycle arrest activity in combination with metformin, whereas other miRNAs (miR-18b-5p, miR-145-3p miR-376b-5p, and miR-718) resulted primarily in cell cycle arrest when combined with metformin. Investigation of the combined effect of miRNAs and metformin on CRC cell metabolism showed that miR-18b-5p, miR-145-3p, miR-376b-5p, miR-676-3p and miR-718 affected glycolysis only, while miR-1181 only regulated CRC respiration. MicroRNAs can sensitize CRC cells to the anti-proliferative effects of metformin. Identifying relevant miRNA targets may enable the design of innovative therapeutic strategies.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Metformina/farmacología , MicroARNs/fisiología , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Neoplasias Colorrectales/patología , Relación Dosis-Respuesta a Droga , Glucólisis/efectos de los fármacos , Glucólisis/genética , Humanos
13.
Cancers (Basel) ; 14(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36139550

RESUMEN

The long noncoding RNA NEAT1 is known to be heavily dysregulated in many cancers. A single exon gene produces two isoforms, NEAT1_1 and NEAT1_2, through alternative 3'-end processing. As the longer isoform, NEAT1_2 is an essential scaffold for nuclear paraspeckle formation. It was previously thought that the short NEAT1_1 isoform only exists to keep the NEAT1 locus active for rapid paraspeckle formation. However, a recent glycolysis-enhancing function for NEAT1_1, contributing to cancer cell proliferation and the Warburg effect, has been demonstrated. Previous studies have mainly focused on quantifying total NEAT1 and NEAT1_2 expression levels. However, in light of the NEAT1_1 role in cancer cell metabolism, the contribution from specific NEAT1 isoforms is no longer clear. Here, the roles of NEAT1_1 and NEAT1_2 in metabolism and cancer progression are discussed.

14.
Cell Rep ; 38(7): 110365, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35172150

RESUMEN

AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin complex 1 (mTORC1) are metabolic kinases that co-ordinate nutrient supply with cell growth. AMPK negatively regulates mTORC1, and mTORC1 reciprocally phosphorylates S345/7 in both AMPK α-isoforms. We report that genetic or torin1-induced loss of α2-S345 phosphorylation relieves suppression of AMPK signaling; however, the regulatory effect does not translate to α1-S347 in HEK293T or MEF cells. Dephosphorylation of α2-S345, but not α1-S347, transiently targets AMPK to lysosomes, a cellular site for activation by LKB1. By mass spectrometry, we find that α2-S345 is basally phosphorylated at 2.5-fold higher stoichiometry than α1-S347 in HEK293T cells and, unlike α1, phosphorylation is partially retained after prolonged mTORC1 inhibition. Loss of α2-S345 phosphorylation in endogenous AMPK fails to sustain growth of MEFs under amino acid starvation conditions. These findings uncover an α2-specific mechanism by which AMPK can be activated at lysosomes in the absence of changes in cellular energy.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Lisosomas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP/metabolismo , Secuencia de Aminoácidos , Animales , Activación Enzimática , Femenino , Glucógeno Sintasa Quinasa 3/química , Glucógeno Sintasa Quinasa 3/metabolismo , Células HEK293 , Células HeLa , Humanos , Isoenzimas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Endogámicos C57BL , Fosforilación , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
15.
Nat Biotechnol ; 40(4): 576-584, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34857927

RESUMEN

Protein phosphorylation dynamically integrates environmental and cellular information to control biological processes. Identifying functional phosphorylation amongst the thousands of phosphosites regulated by a perturbation at a global scale is a major challenge. Here we introduce 'personalized phosphoproteomics', a combination of experimental and computational analyses to link signaling with biological function by utilizing human phenotypic variance. We measure individual subject phosphoproteome responses to interventions with corresponding phenotypes measured in parallel. Applying this approach to investigate how exercise potentiates insulin signaling in human skeletal muscle, we identify both known and previously unidentified phosphosites on proteins involved in glucose metabolism. This includes a cooperative relationship between mTOR and AMPK whereby the former directly phosphorylates the latter on S377, for which we find a role in metabolic regulation. These results establish personalized phosphoproteomics as a general approach for investigating the signal transduction underlying complex biology.


Asunto(s)
Fenómenos Biológicos , Fosfoproteínas , Fosfoproteínas/genética , Fosforilación , Proteómica/métodos , Transducción de Señal/fisiología
16.
Nature ; 435(7041): 507-12, 2005 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-15917811

RESUMEN

Stress-activated mitogen-activated protein kinase cascades instigate a range of changes to enable eukaryotic cells to cope with particular insults. In Schizosaccharomyces pombe these responses include the transcription of specific gene sets and inhibition of entry into mitosis. The S. pombe stress response pathway (SRP) also promotes commitment to mitosis in unperturbed cell cycles to allow cells to match their rate of division with nutrient availability. The nature of this SRP function in cell cycle control is unknown. Entry into mitosis is controlled by mitosis-promoting factor (MPF; Cdc2/cyclin B) activity. Inhibitory phosphorylation of Cdc2 by Wee1 kinase inactivates MPF until Cdc25 removes this phosphate to promote mitosis. The balance between Wee1 and Cdc25 activities is influenced by the recruitment of polo kinase (Plo1) to the spindle pole body (SPB). The SPB component Cut12 mediates this recruitment. Hyper-activating mutations in either cut12 or plo1 enable Cdc25-defective cells to enter mitosis. The hyperactive cut12.s11 mutation suppresses cdc25.22, as it promotes recruitment of active Plo1 to interphase SPBs. Here we show that the SRP promotes phosphorylation of Plo1 on Ser 402. In unperturbed cell cycles, SRP-mediated phosphorylation of Ser 402 promotes Plo1 recruitment to SPBs and thus commitment to mitosis. Ser 402 phosphorylation also ensures efficient reinitiation of cell tip growth and cell division during recovery from particular stresses. Thus, phosphorylation of Plo1 Ser 402 not only enables SRP signalling to modulate the timing of mitotic commitment in response to nutrient status in unperturbed cycles, but also promotes the return to normal cell cycle control after stress.


Asunto(s)
Ciclo Celular/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Transducción de Señal , División Celular , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mitosis/fisiología , Mutación/genética , Fosforilación , Fosfoserina/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Schizosaccharomyces/enzimología , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Huso Acromático/metabolismo , Temperatura
17.
Open Biol ; 11(4): 200405, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33823663

RESUMEN

Fluctuations in TOR, AMPK and MAP-kinase signalling maintain cellular homeostasis and coordinate growth and division with environmental context. We have applied quantitative, SILAC mass spectrometry to map TOR and nutrient-controlled signalling in the fission yeast Schizosaccharomyces pombe. Phosphorylation levels at more than 1000 sites were altered following nitrogen stress or Torin1 inhibition of the TORC1 and TORC2 networks that comprise TOR signalling. One hundred and thirty of these sites were regulated by both perturbations, and the majority of these (119) new targets have not previously been linked to either nutritional or TOR control in either yeasts or humans. Elimination of AMPK inhibition of TORC1, by removal of AMPKα (ssp2::ura4+), identified phosphosites where nitrogen stress-induced changes were independent of TOR control. Using a yeast strain with an ATP analogue-sensitized Cdc2 kinase, we excluded sites that were changed as an indirect consequence of mitotic control modulation by nitrogen stress or TOR signalling. Nutritional control of gene expression was reflected in multiple targets in RNA metabolism, while significant modulation of actin cytoskeletal components points to adaptations in morphogenesis and cell integrity networks. Reduced phosphorylation of the MAPKK Byr1, at a site whose human equivalent controls docking between MEK and ERK, prevented sexual differentiation when resources were sparse but not eliminated.


Asunto(s)
Fosfoproteínas/metabolismo , Proteoma , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Biomarcadores , Ciclo Celular/genética , Biología Computacional , Metabolismo Energético , Ontología de Genes , Interacciones Microbiota-Huesped , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Nitrógeno/metabolismo , Fosfoproteínas/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Transducción de Señal , Estrés Fisiológico , Serina-Treonina Quinasas TOR/genética
18.
Nat Metab ; 2(1): 41-49, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31993556

RESUMEN

Central to cellular metabolism and cell proliferation are highly conserved signalling pathways controlled by mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK)1,2, dysregulation of which are implicated in pathogenesis of major human diseases such as cancer and type 2 diabetes. AMPK pathways leading to reduced cell proliferation are well established and, in part, act through inhibition of TOR complex-1 (TORC1) activity. Here we demonstrate reciprocal regulation, specifically that TORC1 directly down-regulates AMPK signalling by phosphorylating the evolutionarily conserved residue Ser367 in the fission yeast AMPK catalytic subunit Ssp2, and AMPK α1Ser347/α2Ser345 in the mammalian homologs, which is associated with reduced phosphorylation of activation loop Thr172. Genetic or pharmacological inhibition of TORC1 signalling led to AMPK activation in the absence of increased AMP:ATP ratios; under nutrient stress conditions this was associated with growth limitation in both yeast and human cell cultures. Our findings reveal fundamental, bi-directional regulation between two major metabolic signalling networks and uncover new opportunity for cancer treatment strategies aimed at suppressing cell proliferation in the nutrient-poor tumor microenvironment.


Asunto(s)
Adenilato Quinasa/antagonistas & inhibidores , Proliferación Celular/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/fisiología , Nutrientes/metabolismo , Estrés Fisiológico , Adenilato Quinasa/química , Adenilato Quinasa/metabolismo , Dominio Catalítico , Diabetes Mellitus Tipo 2/metabolismo , Regulación hacia Abajo , Activación Enzimática , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/efectos de los fármacos , Neoplasias/metabolismo , Fosforilación , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Transducción de Señal/fisiología
19.
Biochem Soc Trans ; 37(Pt 1): 273-7, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19143645

RESUMEN

Cell growth and cell division are coupled to control cell size and this co-ordination is often modulated by the availability of nutrients. In many eukaryotes, TOR (target of rapamycin) signalling is involved in coupling nutrient sensing to cell growth and division controls. Nutrient stress inhibits TOR signalling to advance the timing of cell division and thus leads to continued cell division at reduced cell size. Most changes in the environment stimulate stress-activated MAPK (mitogen-activated protein kinase) signalling pathways. Several MAPKs also have a general role in the control of mitotic onset and cell division. In the present paper, I discuss the interplay between two major signalling pathways, the TOR and the stress MAPK signalling pathways, in controlling mitotic commitment, with the main focus being on fission yeast (Schizosaccharomyces pombe).


Asunto(s)
Alimentos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Mitosis , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/enzimología , Animales , Humanos
20.
Mol Metab ; 23: 98-126, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837197

RESUMEN

BACKGROUND: Cancer cells possess a common metabolic phenotype, rewiring their metabolic pathways from mitochondrial oxidative phosphorylation to aerobic glycolysis and anabolic circuits, to support the energetic and biosynthetic requirements of continuous proliferation and migration. While, over the past decade, molecular and cellular studies have clearly highlighted the association of oncogenes and tumor suppressors with cancer-associated glycolysis, more recent attention has focused on the role of microRNAs (miRNAs) in mediating this metabolic shift. Accumulating studies have connected aberrant expression of miRNAs with direct and indirect regulation of aerobic glycolysis and associated pathways. SCOPE OF REVIEW: This review discusses the underlying mechanisms of metabolic reprogramming in cancer cells and provides arguments that the earlier paradigm of cancer glycolysis needs to be updated to a broader concept, which involves interconnecting biological pathways that include miRNA-mediated regulation of metabolism. For these reasons and in light of recent knowledge, we illustrate the relationships between metabolic pathways in cancer cells. We further summarize our current understanding of the interplay between miRNAs and these metabolic pathways. This review aims to highlight important metabolism-associated molecular components in the hunt for selective preventive and therapeutic treatments. MAJOR CONCLUSIONS: Metabolism in cancer cells is influenced by driver mutations but is also regulated by posttranscriptional gene silencing. Understanding the nuanced regulation of gene expression in these cells and distinguishing rapid cellular responses from chronic adaptive mechanisms provides a basis for rational drug design and novel therapeutic strategies.


Asunto(s)
Respiración de la Célula , Glucólisis , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Animales , Metabolismo Energético , Regulación Neoplásica de la Expresión Génica , Humanos , Mitocondrias/metabolismo , Oncogenes/genética , Fosforilación Oxidativa , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA