Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Cell ; 167(3): 709-721.e12, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27768892

RESUMEN

Chromatin remodelers regulate genes by organizing nucleosomes around promoters, but their individual contributions are obfuscated by the complex in vivo milieu of factor redundancy and indirect effects. Genome-wide reconstitution of promoter nucleosome organization with purified proteins resolves this problem and is therefore a critical goal. Here, we reconstitute four stages of nucleosome architecture using purified components: yeast genomic DNA, histones, sequence-specific Abf1/Reb1, and remodelers RSC, ISW2, INO80, and ISW1a. We identify direct, specific, and sufficient contributions that in vivo observations validate. First, RSC clears promoters by translating poly(dA:dT) into directional nucleosome removal. Second, partial redundancy is recapitulated where INO80 alone, or ISW2 at Abf1/Reb1sites, positions +1 nucleosomes. Third, INO80 and ISW2 each align downstream nucleosomal arrays. Fourth, ISW1a tightens the spacing to canonical repeat lengths. Such a minimal set of rules and proteins establishes core mechanisms by which promoter chromatin architecture arises through a blend of redundancy and specialization.


Asunto(s)
Ensamble y Desensamble de Cromatina , Nucleosomas/química , Nucleosomas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Cromatina/química , Cromatina/genética , ADN de Hongos/química , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Genoma Fúngico , Histonas/química , Histonas/genética , Poli dA-dT/química , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/química , Factores de Transcripción/genética
2.
Genes Dev ; 36(1-2): 17-22, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34916303

RESUMEN

Eukaryotic cells maintain an optimal level of mRNAs through unknown mechanisms that balance RNA synthesis and degradation. We found that inactivation of the RNA exosome leads to global reduction of nascent mRNA transcripts, and that this defect is accentuated by loss of deposition of histone variant H2A.Z. We identify the mRNA for the sirtuin deacetylase Hst3 as a key target for the RNA exosome that mediates communication between RNA degradation and transcription machineries. These findings reveal how the RNA exosome and H2A.Z function together to control a deacetylase, ensuring proper levels of transcription in response to changes in RNA degradation.


Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma , Sirtuinas , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Histonas/genética , Histonas/metabolismo , Homeostasis/genética , ARN Mensajero/genética , Sirtuinas/genética , Sirtuinas/metabolismo
3.
Nat Rev Mol Cell Biol ; 18(7): 407-422, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28512350

RESUMEN

Cells utilize diverse ATP-dependent nucleosome-remodelling complexes to carry out histone sliding, ejection or the incorporation of histone variants, suggesting that different mechanisms of action are used by the various chromatin-remodelling complex subfamilies. However, all chromatin-remodelling complex subfamilies contain an ATPase-translocase 'motor' that translocates DNA from a common location within the nucleosome. In this Review, we discuss (and illustrate with animations) an alternative, unifying mechanism of chromatin remodelling, which is based on the regulation of DNA translocation. We propose the 'hourglass' model of remodeller function, in which each remodeller subfamily utilizes diverse specialized proteins and protein domains to assist in nucleosome targeting or to differentially detect nucleosome epitopes. These modules converge to regulate a common DNA translocation mechanism, to inform the conserved ATPase 'motor' on whether and how to apply DNA translocation, which together achieve the various outcomes of chromatin remodelling: nucleosome assembly, chromatin access and nucleosome editing.


Asunto(s)
Adenosina Trifosfato/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , ADN/metabolismo , Nucleosomas/metabolismo , Animales , Ensamble y Desensamble de Cromatina/genética , Humanos
4.
Cell ; 144(2): 200-13, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21241891

RESUMEN

INO80 is an evolutionarily conserved, ATP-dependent chromatin-remodeling enzyme that plays roles in transcription, DNA repair, and replication. Here, we show that yeast INO80 facilitates these diverse processes at least in part by controlling genome-wide distribution of the histone variant H2A.Z. In the absence of INO80, H2A.Z nucleosomes are mislocalized, and H2A.Z levels at promoters show reduced responsiveness to transcriptional changes, suggesting that INO80 controls H2A.Z dynamics. Additionally, we demonstrate that INO80 has a histone-exchange activity in which the enzyme can replace nucleosomal H2A.Z/H2B with free H2A/H2B dimers. Genetic interactions between ino80 and htz1 support a model in which INO80 catalyzes the removal of unacetylated H2A.Z from chromatin as a mechanism to promote genome stability.


Asunto(s)
Ensamble y Desensamble de Cromatina , Genoma Fúngico , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Inestabilidad Genómica , Nucleosomas/metabolismo , Transcripción Genética
5.
Mol Cell ; 67(4): 594-607.e4, 2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28735899

RESUMEN

Pervasive transcription initiates from cryptic promoters and is observed in eukaryotes ranging from yeast to mammals. The Set2-Rpd3 regulatory system prevents cryptic promoter function within expressed genes. However, conserved systems that control pervasive transcription within intergenic regions have not been well established. Here we show that Mot1, Ino80 chromatin remodeling complex (Ino80C), and NC2 co-localize on chromatin and coordinately suppress pervasive transcription in S. cerevisiae and murine embryonic stem cells (mESCs). In yeast, all three proteins bind subtelomeric heterochromatin through a Sir3-stimulated mechanism and to euchromatin via a TBP-stimulated mechanism. In mESCs, the proteins bind to active and poised TBP-bound promoters along with promoters of polycomb-silenced genes apparently lacking TBP. Depletion of Mot1, Ino80C, or NC2 by anchor away in yeast or RNAi in mESCs leads to near-identical transcriptome phenotypes, with new subtelomeric transcription in yeast, and greatly increased pervasive transcription in both yeast and mESCs.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Células Madre Embrionarias/enzimología , Fosfoproteínas/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/genética , Sitios de Unión , Línea Celular , Proteínas de Unión al ADN , Eucromatina/genética , Eucromatina/metabolismo , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Genotipo , Heterocromatina/genética , Heterocromatina/metabolismo , Fenotipo , Fosfoproteínas/genética , Regiones Promotoras Genéticas , Unión Proteica , Interferencia de ARN , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Factores Asociados con la Proteína de Unión a TATA/genética , Proteína de Unión a TATA-Box/genética , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIID , Factores de Transcripción/genética , Transfección
6.
Cell ; 138(6): 1109-21, 2009 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-19766565

RESUMEN

Heterochromatin plays a key role in protection of chromosome integrity by suppressing homologous recombination. In Saccharomyces cerevisiae, Sir2p, Sir3p, and Sir4p are structural components of heterochromatin found at telomeres and the silent mating-type loci. Here we have investigated whether incorporation of Sir proteins into minichromosomes regulates early steps of recombinational repair in vitro. We find that addition of Sir3p to a nucleosomal substrate is sufficient to eliminate yRad51p-catalyzed formation of joints, and that this repression is enhanced by Sir2p/Sir4p. Importantly, Sir-mediated repression requires histone residues that are critical for silencing in vivo. Moreover, we demonstrate that the SWI/SNF chromatin-remodeling enzyme facilitates joint formation by evicting Sir3p, thereby promoting subsequent Rad54p-dependent formation of a strand invasion product. These results suggest that recombinational repair in the context of heterochromatin presents additional constraints that can be overcome by ATP-dependent chromatin-remodeling enzymes.


Asunto(s)
Adenosina Trifosfato/metabolismo , Ensamble y Desensamble de Cromatina , Reparación del ADN , Heterocromatina/metabolismo , Recombinación Genética , Proteínas Cromosómicas no Histona/metabolismo , Histona Desacetilasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2 , Sirtuinas/metabolismo , Factores de Transcripción/metabolismo
7.
Mol Cell ; 64(5): 888-899, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27818141

RESUMEN

Molecular chaperones govern protein homeostasis, being allied to the beginning (folding) and ending (degradation) of the protein life cycle. Yet, the Hsp90 system primarily associates with native factors, including fully assembled complexes. The significance of these connections is poorly understood. To delineate why Hsp90 and its cochaperone p23 interact with a mature structure, we focused on the RSC chromatin remodeler. Both Hsp90 and p23 triggered the release of RSC from DNA or a nucleosome. Although Hsp90 only freed bound RSC, p23 enhanced nucleosome remodeling prior to discharging the complex. In vivo, RSC mobility and remodeling function were chaperone dependent. Our results suggest Hsp90 and p23 contribute to proteostasis by chaperoning mature factors through energetically unfavorable events, thereby maintaining the cellular pool of active native proteins. In the case of RSC, p23 and Hsp90 promote a dynamic action, allowing a limited number of remodelers to effectively maintain chromatin in a pliable state.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/genética , Eliminación de Gen , Proteínas HSP90 de Choque Térmico/genética , Chaperonas Moleculares/genética , Conformación Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
8.
Mol Cell ; 58(6): 1113-23, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-25959393

RESUMEN

H2A.Z is a highly conserved histone variant involved in several key nuclear processes. It is incorporated into promoters by SWR-C-related chromatin remodeling complexes, but whether it is also actively excluded from non-promoter regions is not clear. Here we provide genomic and biochemical evidence that the RNA polymerase II (RNA Pol II) elongation-associated histone chaperones FACT and Spt6 both contribute to restricting H2A.Z from intragenic regions. In the absence of FACT or Spt6, the lack of efficient nucleosome reassembly coupled to pervasive incorporation of H2A.Z by mislocalized SWR-C alters chromatin composition and contributes to cryptic initiation. Therefore, chaperone-mediated H2A.Z confinement is crucial for restricting the chromatin signature of gene promoters that otherwise may license or promote cryptic transcription.


Asunto(s)
Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional/metabolismo , Western Blotting , Cromatina/genética , Cromatina/metabolismo , Regulación Fúngica de la Expresión Génica , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/genética , Modelos Genéticos , Mutación , Proteínas Nucleares/genética , Nucleosomas/genética , Nucleosomas/metabolismo , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Transcripción Genética , Factores de Elongación Transcripcional/genética
9.
Genes Dev ; 29(4): 350-5, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25691465

RESUMEN

Here we show that the Ino80 chromatin remodeling complex (Ino80C) directly prevents euchromatin from invading transcriptionally silent chromatin within intergenic regions and at the border of euchromatin and heterochromatin. Deletion of Ino80C subunits leads to increased H3K79 methylation and noncoding RNA polymerase II (Pol II) transcription centered at the Ino80C-binding sites. The effect of Ino80C is direct, as it blocks H3K79 methylation by Dot1 in vitro. Heterochromatin stimulates the binding of Ino80C in vitro and in vivo. Our data reveal that Ino80C serves as a general silencing complex that restricts transcription to gene units in euchromatin.


Asunto(s)
Cromatina/genética , Eucromatina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Eucromatina/genética , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , N-Metiltransferasa de Histona-Lisina/metabolismo , Metilación , Proteínas Nucleares/metabolismo , Unión Proteica , ARN Polimerasa II/metabolismo
10.
Proc Natl Acad Sci U S A ; 115(49): 12447-12452, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30455303

RESUMEN

Heterochromatin is a silenced chromatin region essential for maintaining genomic stability and driving developmental processes. The complicated structure and dynamics of heterochromatin have rendered it difficult to characterize. In budding yeast, heterochromatin assembly requires the SIR proteins-Sir3, believed to be the primary structural component of SIR heterochromatin, and the Sir2-4 complex, responsible for the targeted recruitment of SIR proteins and the deacetylation of lysine 16 of histone H4. Previously, we found that Sir3 binds but does not compact nucleosomal arrays. Here we reconstitute chromatin fibers with the complete complement of SIR proteins and use sedimentation velocity, molecular modeling, and atomic force microscopy to characterize the stoichiometry and conformation of SIR chromatin fibers. In contrast to fibers with Sir3 alone, our results demonstrate that SIR arrays are highly compact. Strikingly, the condensed structure of SIR heterochromatin fibers requires both the integrity of H4K16 and an interaction between Sir3 and Sir4. We propose a model in which a dimer of Sir3 bridges and stabilizes two adjacent nucleosomes, while a Sir2-4 heterotetramer interacts with Sir3 associated with a nucleosomal trimer, driving fiber compaction.


Asunto(s)
Heterocromatina/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Regulación Fúngica de la Expresión Génica , Histonas , Unión Proteica , Saccharomyces cerevisiae/genética
11.
Nat Rev Genet ; 14(1): 62-75, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23247436

RESUMEN

The maintenance of genome integrity is essential for organism survival and for the inheritance of traits to offspring. Genomic instability is caused by DNA damage, aberrant DNA replication or uncoordinated cell division, which can lead to chromosomal aberrations and gene mutations. Recently, chromatin regulators that shape the epigenetic landscape have emerged as potential gatekeepers and signalling coordinators for the maintenance of genome integrity. Here, we review chromatin functions during the two major pathways that control genome integrity: namely, repair of DNA damage and DNA replication. We also discuss recent evidence that suggests a novel role for chromatin-remodelling factors in chromosome segregation and in the prevention of aneuploidy.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Genoma , Ensamble y Desensamble de Cromatina , Daño del ADN , Reparación del ADN , Replicación del ADN , Inestabilidad Genómica , Mitosis
12.
J Biol Chem ; 292(13): 5271-5281, 2017 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-28202543

RESUMEN

Repair of DNA double strand breaks (DSBs) is key for maintenance of genome integrity. When DSBs are repaired by homologous recombination, DNA ends can undergo extensive processing, producing long stretches of single-stranded DNA (ssDNA). In vivo, DSB processing occurs in the context of chromatin, and studies indicate that histones may remain associated with processed DSBs. Here we demonstrate that histones are not evicted from ssDNA after in vitro chromatin resection. In addition, we reconstitute histone-ssDNA complexes (termed ssNucs) with ssDNA and recombinant histones and analyze these particles by a combination of native gel electrophoresis, sedimentation velocity, electron microscopy, and a recently developed electrostatic force microscopy technique, DREEM (dual-resonance frequency-enhanced electrostatic force microscopy). The reconstituted ssNucs are homogenous and relatively stable, and DREEM reveals ssDNA wrapping around histones. We also find that histone octamers are easily transferred in trans from ssNucs to either double-stranded DNA or ssDNA. Furthermore, the Fun30 remodeling enzyme, which has been implicated in DNA repair, binds ssNucs preferentially over nucleosomes, and ssNucs are effective at activating Fun30 ATPase activity. Our results indicate that ssNucs may be a hallmark of processes that generate ssDNA, and that posttranslational modification of ssNucs may generate novel signaling platforms involved in genome stability.


Asunto(s)
Reparación del ADN/genética , ADN de Cadena Simple/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Saccharomyces cerevisiae/genética , Ensamble y Desensamble de Cromatina/genética , Roturas del ADN de Doble Cadena , Inestabilidad Genómica , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
13.
Proc Natl Acad Sci U S A ; 111(50): 17827-32, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25453095

RESUMEN

Heterochromatin is a specialized chromatin structure that is central to eukaryotic transcriptional regulation and genome stability. Despite its globally repressive role, heterochromatin must also be dynamic, allowing for its repair and replication. In budding yeast, heterochromatin formation requires silent information regulators (Sirs) Sir2p, Sir3p, and Sir4p, and these Sir proteins create specialized chromatin structures at telomeres and silent mating-type loci. Previously, we found that the SWI/SNF chromatin remodeling enzyme can catalyze the ATP-dependent eviction of Sir3p from recombinant nucleosomal arrays, and this activity enhances early steps of recombinational repair in vitro. Here, we show that the ATPase subunit of SWI/SNF, Swi2p/Snf2p, interacts with the heterochromatin structural protein Sir3p. Two interaction surfaces are defined, including an interaction between the ATPase domain of Swi2p and the nucleosome binding, Bromo-Adjacent-Homology domain of Sir3p. A SWI/SNF complex harboring a Swi2p subunit that lacks this Sir3p interaction surface is unable to evict Sir3p from nucleosomes, even though its ATPase and remodeling activities are intact. In addition, we find that the interaction between Swi2p and Sir3p is key for SWI/SNF to promote resistance to replication stress in vivo and for establishment of heterochromatin at telomeres.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , Heterocromatina/metabolismo , Histonas/metabolismo , Modelos Moleculares , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Animales , Western Blotting , Cartilla de ADN/genética , Electroforesis en Gel de Poliacrilamida , Escherichia coli , Oligonucleótidos/genética , Reacción en Cadena de la Polimerasa , Colorantes de Rosanilina , Xenopus laevis
14.
Genes Dev ; 23(8): 912-27, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19390086

RESUMEN

DNA double-strand breaks (DSBs) are among the most deleterious forms of DNA lesions in cells. Here we induced site-specific DSBs in yeast cells and monitored chromatin dynamics surrounding the DSB using Chromosome Conformation Capture (3C). We find that formation of a DSB within G1 cells is not sufficient to alter chromosome dynamics. However, DSBs formed within an asynchronous cell population result in large decreases in both intra- and interchromosomal interactions. Using live cell microscopy, we find that changes in chromosome dynamics correlate with relocalization of the DSB to the nuclear periphery. Sequestration to the periphery requires the nuclear envelope protein, Mps3p, and Mps3p-dependent tethering delays recombinational repair of a DSB and enhances gross chromosomal rearrangements. Furthermore, we show that components of the telomerase machinery are recruited to a DSB and that telomerase recruitment is required for its peripheral localization. Based on these findings, we propose that sequestration of unrepaired or slowly repaired DSBs to the nuclear periphery reflects a competition between alternative repair pathways.


Asunto(s)
Núcleo Celular/metabolismo , Roturas del ADN de Doble Cadena , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Técnicas Genéticas , Proteínas de la Membrana/metabolismo , Microscopía , Proteínas Nucleares , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerasa/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Ubiquitina-Proteína Ligasas
15.
BMC Mol Biol ; 17(1): 20, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27578267

RESUMEN

BACKGROUND: Cells respond to numerous internal and external stresses, such as heat, cold, oxidative stress, DNA damage, and osmotic pressure changes. In most cases, the primary response to stress is transcriptional induction of genes that assist the cells in tolerating the stress and facilitate the repair of the cellular damage. However, when the transcription machinery itself is stressed, responding by such standard mechanisms may not be possible. RESULTS: In this study, we demonstrate that depletion or inactivation of RNA polymerase II (RNAPII) changes the preferred polyadenylation site usage for several transcripts, and leads to increased transcription of a specific subset of genes. Surprisingly, depletion of RNA polymerase I (RNAPI) also promotes altered polyadenylation site usage, while depletion of RNA polymerase III (RNAPIII) does not appear to have an impact. CONCLUSIONS: Our results demonstrate that stressing the transcription machinery by depleting either RNAPI or RNAPII leads to a novel transcriptional response that results in induction of specific mRNAs and altered polyadenylation of many of the induced transcripts.


Asunto(s)
Empalme Alternativo , Poliadenilación , ARN Polimerasa II/genética , ARN Mensajero/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transcripción Genética , Eliminación de Gen
16.
Mol Cell ; 30(6): 803-10, 2008 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-18570881

RESUMEN

Repair of chromosomal DNA double-strand breaks by homologous recombination is essential for cell survival and genome stability. Within eukaryotic cells, this repair pathway requires a search for a homologous donor sequence and a subsequent strand invasion event on chromatin fibers. We employ a biotin-streptavidin minichromosome capture assay to show that yRad51 or hRad51 presynaptic filaments are sufficient to locate a homologous sequence and form initial joints, even on the surface of a nucleosome. Furthermore, we present evidence that the Rad54 chromatin-remodeling enzyme functions to convert these initial metastable products of the homology search to a stable joint molecule that is competent for subsequent steps of the repair process. Thus, contrary to popular belief, nucleosomes do not pose a potent barrier for successful recognition and capture of homology by an invading presynaptic filament.


Asunto(s)
Daño del ADN , Reparación del ADN , Nucleosomas/fisiología , Recombinasa Rad51/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Cromatina/química , Cromatina/metabolismo , ADN de Hongos/genética , Histonas/química , Histonas/metabolismo , Humanos , Cinética , Nucleosomas/genética , Fragmentos de Péptidos/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
17.
Biochim Biophys Acta ; 1839(8): 728-36, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24583555

RESUMEN

Chromatin dynamics play an essential role in regulating the accessibility of genomic DNA for a variety of nuclear processes, including gene transcription and DNA repair. The posttranslational modification of the core histones and the action of ATP-dependent chromatin remodeling enzymes represent two primary mechanisms by which chromatin dynamics are controlled and linked to nuclear events. Although there are examples in which a histone modification or a remodeling enzyme may be sufficient to drive a chromatin transition, these mechanisms typically work in concert to integrate regulatory inputs, leading to a coordinated alteration in chromatin structure and function. Indeed, site-specific histone modifications can facilitate the recruitment of chromatin remodeling enzymes to particular genomic regions, or they can regulate the efficiency or the outcome of a chromatin remodeling reaction. Conversely, chromatin remodeling enzymes can also influence, and sometimes directly modulate, the modification state of histones. These functional interactions are generally complex, frequently transient, and often require the association of myriad additional factors. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.


Asunto(s)
Cromatina/química , Proteínas Cromosómicas no Histona/metabolismo , Epigénesis Genética , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Factores de Transcripción/metabolismo , Acetilación , Animales , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/genética , Reparación del ADN , Células Eucariotas/citología , Células Eucariotas/metabolismo , Histonas/genética , Humanos , Lisina/metabolismo , Metilación , Unión Proteica , Factores de Transcripción/genética , Transcripción Genética
18.
EMBO J ; 30(7): 1277-88, 2011 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-21343911

RESUMEN

Nucleosomes impede access to DNA. Therefore, nucleosome positioning is fundamental to genome regulation. Nevertheless, the molecular nucleosome positioning mechanisms are poorly understood. This is partly because in vitro reconstitution of in vivo-like nucleosome positions from purified components is mostly lacking, barring biochemical studies. Using a yeast extract in vitro reconstitution system that generates in vivo-like nucleosome patterns at S. cerevisiae loci, we find that the RSC chromatin remodelling enzyme is necessary for nucleosome positioning. This was previously suggested by genome-wide in vivo studies and is confirmed here in vivo for individual loci. Beyond the limitations of conditional mutants, we show biochemically that RSC functions directly, can be sufficient, but mostly relies on other factors to properly position nucleosomes. Strikingly, RSC could not be replaced by either the closely related SWI/SNF or the Isw2 remodelling enzyme. Thus, we pinpoint that nucleosome positioning specifically depends on the unique properties of the RSC complex.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Ensamble y Desensamble de Cromatina
20.
Elife ; 132024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809771

RESUMEN

The yeast SWR1C chromatin remodeling enzyme catalyzes the ATP-dependent exchange of nucleosomal histone H2A for the histone variant H2A.Z, a key variant involved in a multitude of nuclear functions. How the 14-subunit SWR1C engages the nucleosomal substrate remains largely unknown. Studies on the ISWI, CHD1, and SWI/SNF families of chromatin remodeling enzymes have demonstrated key roles for the nucleosomal acidic patch for remodeling activity, however a role for this nucleosomal epitope in nucleosome editing by SWR1C has not been tested. Here, we employ a variety of biochemical assays to demonstrate an essential role for the acidic patch in the H2A.Z exchange reaction. Utilizing asymmetrically assembled nucleosomes, we demonstrate that the acidic patches on each face of the nucleosome are required for SWR1C-mediated dimer exchange, suggesting SWR1C engages the nucleosome in a 'pincer-like' conformation, engaging both patches simultaneously. Loss of a single acidic patch results in loss of high affinity nucleosome binding and nucleosomal stimulation of ATPase activity. We identify a conserved arginine-rich motif within the Swc5 subunit that binds the acidic patch and is key for dimer exchange activity. In addition, our cryoEM structure of a Swc5-nucleosome complex suggests that promoter proximal, histone H2B ubiquitylation may regulate H2A.Z deposition. Together these findings provide new insights into how SWR1C engages its nucleosomal substrate to promote efficient H2A.Z deposition.


Asunto(s)
Adenosina Trifosfatasas , Histonas , Nucleosomas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Histonas/metabolismo , Histonas/química , Nucleosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Ensamble y Desensamble de Cromatina , Unión Proteica , Multimerización de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA