Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mol Ecol ; 26(7): 1877-1890, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28231407

RESUMEN

Host specialization has important consequences for the diversification and ecological interactions of obligate pathogens. The anther-smut disease of natural plant populations, caused by Microbotryum fungi, has been characterized by specialized host-pathogen interactions, which contribute in part to the isolation among these numerous fungal species. This study investigated the molecular variation of Microbotryum pathogens within the geographic and host-specific distributions on wild Dianthus species in southern European Alps. In contrast to prior studies on this pathogen genus, a range of overlapping host specificities was observed for four delineated Microbotryum lineages on Dianthus hosts, and their frequent co-occurrence within single-host populations was quantified at local and regional scales. In addition to potential consequences for direct pathogen competition, the sympatry of Microbotryum lineages led to hybridization between them in many populations, and these admixed genotypes suffered significant meiotic sterility. Therefore, this investigation of the anther-smut fungi reveals how variation in the degrees of host specificity can have major implications for ecological interactions and genetic integrity of differentiated pathogen lineages.


Asunto(s)
Basidiomycota/genética , Dianthus/microbiología , Hibridación Genética , ADN de Hongos/genética , Europa (Continente) , Genotipo , Especificidad del Huésped , Repeticiones de Microsatélite , Enfermedades de las Plantas/microbiología , Aislamiento Reproductivo , Análisis de Secuencia de ADN , Simpatría
2.
Mol Biol Evol ; 32(4): 928-43, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25534033

RESUMEN

Dimorphic mating-type chromosomes in fungi are excellent models for understanding the genomic consequences of recombination suppression. Their suppressed recombination and reduced effective population size are expected to limit the efficacy of natural selection, leading to genomic degeneration. Our aim was to identify the sequences of the mating-type chromosomes (a1 and a2) of the anther-smut fungi and to investigate degeneration in their nonrecombining regions. We used the haploid a1 Microbotryum lychnidis-dioicae reference genome sequence. The a1 and a2 mating-type chromosomes were both isolated electrophoretically and sequenced. Integration with restriction-digest optical maps identified regions of recombination and nonrecombination in the mating-type chromosomes. Genome sequence data were also obtained for 12 other Microbotryum species. We found strong evidence of degeneration across the genus in the nonrecombining regions of the mating-type chromosomes, with significantly higher rates of nonsynonymous substitution (dN/dS) than in nonmating-type chromosomes or in recombining regions of the mating-type chromosomes. The nonrecombining regions of the mating-type chromosomes also showed high transposable element content, weak gene expression, and gene losses. The levels of degeneration did not differ between the a1 and a2 mating-type chromosomes, consistent with the lack of homogametic/heterogametic asymmetry between them, and contrasting with X/Y or Z/W sex chromosomes.


Asunto(s)
Basidiomycota/genética , Genes del Tipo Sexual de los Hongos , Recombinación Genética , Cromosomas Sexuales , Secuencia de Bases , Elementos Transponibles de ADN , Eliminación de Gen , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN
3.
BMC Genomics ; 16: 461, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26076695

RESUMEN

BACKGROUND: The genus Microbotryum includes plant pathogenic fungi afflicting a wide variety of hosts with anther smut disease. Microbotryum lychnidis-dioicae infects Silene latifolia and replaces host pollen with fungal spores, exhibiting biotrophy and necrosis associated with altering plant development. RESULTS: We determined the haploid genome sequence for M. lychnidis-dioicae and analyzed whole transcriptome data from plant infections and other stages of the fungal lifecycle, revealing the inventory and expression level of genes that facilitate pathogenic growth. Compared to related fungi, an expanded number of major facilitator superfamily transporters and secretory lipases were detected; lipase gene expression was found to be altered by exposure to lipid compounds, which signaled a switch to dikaryotic, pathogenic growth. In addition, while enzymes to digest cellulose, xylan, xyloglucan, and highly substituted forms of pectin were absent, along with depletion of peroxidases and superoxide dismutases that protect the fungus from oxidative stress, the repertoire of glycosyltransferases and of enzymes that could manipulate host development has expanded. A total of 14% of the genome was categorized as repetitive sequences. Transposable elements have accumulated in mating-type chromosomal regions and were also associated across the genome with gene clusters of small secreted proteins, which may mediate host interactions. CONCLUSIONS: The unique absence of enzyme classes for plant cell wall degradation and maintenance of enzymes that break down components of pollen tubes and flowers provides a striking example of biotrophic host adaptation.


Asunto(s)
Hongos/genética , Genoma Fúngico/genética , Parásitos/genética , Enfermedades de las Plantas/microbiología , Plantas/microbiología , Silene/microbiología , Transcriptoma/genética , Animales , Mapeo Cromosómico/métodos , Perfilación de la Expresión Génica/métodos , Interacciones Huésped-Parásitos/genética , Lipasa/genética , Peroxidasas/genética , Superóxido Dismutasa/genética
4.
BMC Evol Biol ; 13: 224, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24112452

RESUMEN

BACKGROUND: Hybridization and reproductive isolation are central to the origin and maintenance of species, and especially for sympatric species, gene flow is often inhibited through barriers that depend upon mating compatibility factors. The anther-smut fungi (genus Microbotryum) serve as models for speciation in the face of sympatry, and previous studies have tested for but not detected assortative mating. In addition, post-mating barriers are indicated by reduced fitness of hybrids, but sources of those barriers (i.e. ecological maladaptation or genetic incompatibilities) have not yet been detected. Here, backcrossing experiments, specifically controlling for the fungal species origins of the mating compatibility factors, were used to investigate reproductive isolation in the recently-derived species Microbotryum lychnidis-dioicae and Microbotryum silenes-dioicae. RESULTS: Assortative mating was detected during backcrossing and was manifested by the preferential conjugation of the hybrid-produced gametes with non-hybrid gametes containing mating compatibility factors from the same parental species. Patterns of post-mating performance supported either a level of extrinsic isolation mechanism, where backcross progeny with a higher proportion of the pathogen genome adapted to the particular host environment were favored, or an infection advantage attributed to greater genetic contribution to the hybrid from the M. lychnidis-dioicae genome. CONCLUSION: The use of controlled backcrossing experiments reveals significant species-specific mating type effects on conjugations between recently-derived sister species, which are likely to play important roles in both maintaining species separation and the nature of hybrids lineages that emerge in sympatry between Microbotryum species.


Asunto(s)
Basidiomycota/clasificación , Basidiomycota/genética , Basidiomycota/citología , Flujo Génico , Hibridación Genética , Meiosis , Plantas/microbiología , Reproducción , Aislamiento Reproductivo
5.
Front Plant Sci ; 13: 921961, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909746

RESUMEN

Eutypa dieback and Esca complex are fungal diseases of grape that cause large economic losses in vineyards. These diseases require, or are enhanced by, fungal consortia growth which leads to the deterioration of the wood tissue in the grapevine trunk; however, pathogenesis and the underlying mechanisms involved in the woody tissue degradation are not understood. We examined the role that the consortia fungal metabolome have in generating oxygen radicals that could potentially play a role in trunk decay and pathogenesis. Unique metabolites were isolated from the consortia fungi with some metabolites preferentially reducing iron whereas others were involved in redox cycling to generate hydrogen peroxide. Metabolite suites with different functions were produced when fungi were grown separately vs. when grown in consortia. Chelator-mediated Fenton (CMF) chemistry promoted by metabolites from these fungi allowed for the generation of highly reactive hydroxyl radicals. We hypothesize that this mechanism may be involved in pathogenicity in grapevine tissue as a causal mechanism associated with trunk wood deterioration/necrosis in these two diseases of grape.

6.
Genome Biol Evol ; 9(2): 363-371, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28164239

RESUMEN

Transposable elements (TEs) are selfish, autonomously replicating DNA sequences that constitute a major component of eukaryotic genomes and contribute to genome evolution through their movement and amplification. Many fungal genomes, including the anther-smut fungi in the basidiomycete genus Microbotryum, have genome defense mechanisms, such as repeat-induced point mutation (RIP), which hypermutate repetitive DNA and limit TE activity. Little is known about how hypermutation affects the tempo of TE activity and their sequence evolution. Here we report the identification of a massive burst-like expansion of Gypsy-like retrotransposons in a strain of Microbotryum. This TE expansion evidently occurred in the face of RIP-like hypermutation activity. By examining the fitness of individual TE insertion variants, we found that RIP-like mutations impair TE fitness and limit proliferation. Our results provide evidence for a punctuated pattern of TE expansion in a fungal genome, similar to that observed in animals and plants. While targeted hypermutation is often thought of as an effective protection against mobile element activity, our findings suggest that active TEs can persist and undergo selection while they proliferate in genomes that have RIP-like defenses.


Asunto(s)
Basidiomycota/genética , Expansión de las Repeticiones de ADN , Factores de Transcripción/genética , Tasa de Mutación , Mutación Puntual , Proteínas Recombinantes/genética
7.
Plant Dis ; 90(12): 1481-1484, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30780965

RESUMEN

We examined the influence of an arbuscular-mycorrhizal fungus, Glomus intraradices (INVAM CA 501), on black foot disease caused by the fungus Cylindrocarpon macrodidymum on Vitis rupestris cv. St. George under controlled conditions. Mycorrhizal or nonmycorrhizal grape rootings were inoculated with the pathogen. Eight months following inoculation with the pathogen, we evaluated disease severity, vine growth, and mycorrhizal colonization. Mycorrhizal plants developed significantly less leaf and root symptoms than nonmycorrhizal plants (P = 0.04 and P < 0.0001, respectively). Only nonmycorrhizal grape rootings inoculated with the pathogen had significantly less dry root and leaf weights compared with the noninoculated control (P = 0.0021 and P = 0.0017, respectively). Mycorrhizal colonization was high (48.3% for the noninfected control and 54.5% for plants infected with C. macrodidymum) and not significantly affected by inoculation with C. macrodidymum (P = 0.2256). Thus, V. rupestris preinoculated with G. intraradices were less susceptible to black foot disease than nonmycorrhizal plants. Results from this study suggest that preplant applications of G. intraradices may help prevent black foot disease in the nursery and in the vineyard.

8.
Genome Announc ; 4(1)2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26868400

RESUMEN

Sclerotinia homoeocarpa (F. T. Bennett) is one of the most economically important pathogens on high-amenity cool-season turfgrasses, where it causes dollar spot. To understand the genetic mechanisms of fungicide resistance, which has become highly prevalent, the whole genomes of two isolates with varied resistance levels to fungicides were sequenced.

9.
PLoS One ; 11(5): e0154905, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27149077

RESUMEN

Aquatic and semi-aquatic bugs (Heteroptera) represent a remarkable diversity and a resurging interest has been given to documenting at the species level these insects inhabiting Cameroon in Central Africa due to their potential implication in the transmission of the bacterium Mycobacterium ulcerans, the causal agent of Buruli ulcer, an emerging human disease. A survey was carried out over two years in Cameroon. Morphological analyses were done in two steps. A first step consisted in separating the specimens based on broadly shared characters into morphotypes. The specimens were then separated into two independent batches containing each the same representation of each morphotype. One batch (309 specimens) was used by taxonomy experts on aquatic bugs for species level identification and/or to reconcile nymph with their corresponding adult species. The second batch (188 specimens) was used to define species based on the COI DNA sequences (standard sequence used for "DNA barcoding") and using the Automatic Barcode Gap Discovery (ABGD) method. The first morphological analysis step separated the specimens into 63 different morphotypes (49 adults and 14 nymphs), which were then found to belong to 54 morphological species in the infra-orders Gerromorpha and Nepomorpha based on the species-level morphological identification, and 41-45 putative molecular species according to the gap value retained in the ABGD. Integrating morphology and "DNA barcoding" reconciled all the specimens into 62 aquatic bug species in Cameroon. Generally, we obtained a good congruence between species a priori identified based on morphology from adult morphotypes and molecular putative species. Moreover, molecular identification has allowed the association of 86% of nymphs with adults. This work illustrates the importance of integrative taxonomy.


Asunto(s)
Heterópteros/genética , Animales , Organismos Acuáticos/genética , Biodiversidad , Camerún , ADN/genética , Código de Barras del ADN Taxonómico , Femenino , Heterópteros/anatomía & histología , Masculino , Filogenia , Alineación de Secuencia
10.
Plant Dis ; 89(10): 1051-1059, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30791272

RESUMEN

This study investigated phylogenetic divergence, morphological difference, and pathogenic variation among Cylindrocarpon species isolates associated with black foot disease of grapevine (Vitis sp.) in California. To assess phylogenetic divergence, we sequenced the internal transcribed spacer (ITS) of the nuclear ribosomal DNA (rDNA), partial beta-tubulin (BT) gene introns and exons, and the small subunit mitochondrial rDNA. Isolates associated with black foot disease belonged to two paraphyletic species, Cylindrocarpon destructans and C. macrodidymum. The morphology of these isolates was in agreement with published descriptions of both species. We found that C. macrodidymum isolates were reliably distinguishable from C. destructans isolates in culture by a unique orange-dark brown colony color on 2% malt extract agar and genetically by a species-specific 52-bp DNA insertion in the BT region. Selected isolates of each species inoculated onto grapevine rootstock 5C caused typical black foot disease symptoms. This is the first report of C. macrodidymum in California.

11.
PLoS One ; 10(6): e0118285, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26035711

RESUMEN

Clostridium phytofermentans was isolated from forest soil and is distinguished by its capacity to directly ferment plant cell wall polysaccharides into ethanol as the primary product, suggesting that it possesses unusual catabolic pathways. The objective of the present study was to understand the molecular mechanisms of biomass conversion to ethanol in a single organism, Clostridium phytofermentans, by analyzing its complete genome and transcriptome during growth on plant carbohydrates. The saccharolytic versatility of C. phytofermentans is reflected in a diversity of genes encoding ATP-binding cassette sugar transporters and glycoside hydrolases, many of which may have been acquired through horizontal gene transfer. These genes are frequently organized as operons that may be controlled individually by the many transcriptional regulators identified in the genome. Preferential ethanol production may be due to high levels of expression of multiple ethanol dehydrogenases and additional pathways maximizing ethanol yield. The genome also encodes three different proteinaceous bacterial microcompartments with the capacity to compartmentalize pathways that divert fermentation intermediates to various products. These characteristics make C. phytofermentans an attractive resource for improving the efficiency and speed of biomass conversion to biofuels.


Asunto(s)
Metabolismo de los Hidratos de Carbono/genética , Clostridium/genética , Clostridium/metabolismo , Enzimas/metabolismo , Genoma Bacteriano , Plantas/metabolismo , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Biocombustibles , Transporte Biológico , Enzimas/genética , Etanol/metabolismo , Fermentación , Regulación Bacteriana de la Expresión Génica , Filogenia , ARN Ribosómico 16S , Transcriptoma
12.
Genome Biol Evol ; 6(2): 451-65, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24504088

RESUMEN

From their origin as an early alpha proteobacterial endosymbiont to their current state as cellular organelles, large-scale genomic reorganization has taken place in the mitochondria of all main eukaryotic lineages. So far, most studies have focused on plant and animal mitochondrial (mt) genomes (mtDNA), but fungi provide new opportunities to study highly differentiated mtDNAs. Here, we analyzed 38 complete fungal mt genomes to investigate the evolution of mtDNA gene order among fungi. In particular, we looked for evidence of nonhomologous intrachromosomal recombination and investigated the dynamics of gene rearrangements. We investigated the effect that introns, intronic open reading frames (ORFs), and repeats may have on gene order. Additionally, we asked whether the distribution of transfer RNAs (tRNAs) evolves independently to that of mt protein-coding genes. We found that fungal mt genomes display remarkable variation between and within the major fungal phyla in terms of gene order, genome size, composition of intergenic regions, and presence of repeats, introns, and associated ORFs. Our results support previous evidence for the presence of mt recombination in all fungal phyla, a process conspicuously lacking in most Metazoa. Overall, the patterns of rearrangements may be explained by the combined influences of recombination (i.e., most likely nonhomologous and intrachromosomal), accumulated repeats, especially at intergenic regions, and to a lesser extent, mobile element dynamics.


Asunto(s)
ADN Mitocondrial/genética , Proteínas Fúngicas/genética , Hongos/genética , Orden Génico , Genes Mitocondriales , Variación Genética , Hongos/clasificación , Reordenamiento Génico , Genoma Mitocondrial , Intrones , Mitocondrias/genética , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia
13.
Genetics ; 193(1): 309-15, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23150606

RESUMEN

Genomic regions that determine mating compatibility are subject to distinct evolutionary forces that can lead to a cessation of meiotic recombination and the accumulation of structural changes between members of the homologous chromosome pair. The relatively recent discovery of dimorphic mating-type chromosomes in fungi can aid the understanding of sex chromosome evolution that is common to dioecious plants and animals. For the anther-smut fungus, Microbotryum lychnidis-dioicae (= M. violaceum isolated from Silene latifolia), the extent of recombination cessation on the dimorphic mating-type chromosomes has been conflictingly reported. Comparison of restriction digest optical maps for the two mating-type chromosomes shows that divergence extends over 90% of the chromosome lengths, flanked at either end by two pseudoautosomal regions. Evidence to support the expansion of recombination cessation in stages from the mating-type locus toward the pseudoautosomal regions was not found, but evidence of such expansion could be obscured by ongoing processes that affect genome structure. This study encourages the comparison of forces that may drive large-scale recombination suppression in fungi and other eukaryotes characterized by dimorphic chromosome pairs associated with sexual life cycles.


Asunto(s)
Basidiomycota/genética , Cromosomas Fúngicos , Genes del Tipo Sexual de los Hongos , Evolución Biológica , Mapeo Cromosómico , Recombinación Genética
14.
Ecol Evol ; 3(6): 1741-50, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23789082

RESUMEN

Host ecological traits may limit exposure to infectious disease, thereby generating the wide variation in disease incidence observed between host populations or species. The exclusion of disease by ecological traits may then allow selection to act against physiological defenses when they are costly to maintain in the absence of disease. This study investigates ecological resistance in the Silene-Microbotryum pathosystem. An estimated 80% of perennial Silene species host the anther-smut disease while no annuals harbor the disease in nature. Artificial inoculations of annual and perennial Silene plants, obtained from both natural and horticultural populations, demonstrate that the absence of disease in annuals is not explained by elevated physiological resistance. The annual habit is thus a powerful form of ecological defense against anther smut. Moreover, the higher susceptibility of annual species to anther smut relative to perennials supports the hypothesis of a loss of costly physiological resistance under ecological protection. The observation in annuals that physiological susceptibility is correlated with lower rates of flowering (i.e., lower fitness) suggests that variation in physiological resistance is costly in the absence of disease, even in a naїve Silene species. The absence of disease in natural populations of annuals combined with their high physiological susceptibility attest to the strength of host ecology in shaping the distribution of disease and to the dynamic nature of disease resistance.

15.
PLoS One ; 8(1): e54337, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23382892

RESUMEN

BACKGROUND: Clostridium phytofermentans, an anaerobic soil bacterium, can directly convert plant biomass into biofuels. The genome of C. phytofermentans contains three loci with genes encoding shell proteins of bacterial microcompartments (BMC), organelles composed entirely of proteins. METHODOLOGY AND PRINCIPAL FINDINGS: One of the BMC loci has homology to a BMC-encoding locus implicated in the conversion of fucose to propanol and propionate in a human gut commensal, Roseburia inulinivorans. We hypothesized that it had a similar role in C. phytofermentans. When C. phytofermentans was grown on fucose, the major products identified were ethanol, propanol and propionate. Transmission electron microscopy of fucose- and rhamnose-grown cultures revealed polyhedral structures, presumably BMCs. Microarray analysis indicated that during growth on fucose, operons coding for the BMC locus, fucose dissimilatory enzymes, and an ATP-binding cassette transporter became the dominant transcripts. These data are consistent with fucose fermentation producing a 1,2-propanediol intermediate that is further metabolized in the microcompartment encoded in the BMC locus. Growth on another deoxyhexose sugar, rhamnose, resulted in the expression of the same BMC locus and similar fermentation products. However, a different set of dissimilatory enzymes and transport system genes were induced. Quite surprisingly, growth on fucose or rhamnose also led to the expression of a diverse array of complex plant polysaccharide-degrading enzymes. CONCLUSIONS/SIGNIFICANCE: Based on physiological, genomic, and microarray analyses, we propose a model for the fermentation of fucose and rhamnose in C. phytofermentans that includes enzymes encoded in the same BMC locus. Comparative genomic analysis suggests that this BMC may be present in other clostridial species.


Asunto(s)
Biocombustibles , Clostridium/genética , Fucosa/metabolismo , Ramnosa/metabolismo , 1-Propanol/metabolismo , Anaerobiosis , Reactores Biológicos , Clostridium/crecimiento & desarrollo , Clostridium/metabolismo , Etanol/metabolismo , Fermentación , Humanos , Propionatos/metabolismo
16.
Genome Biol Evol ; 4(3): 240-7, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22250128

RESUMEN

Transposable elements (TEs) are ubiquitous genomic parasites that have prompted the evolution of genome defense systems that restrict their activity. Repeat-induced point mutation (RIP) is a homology-dependent genome defense that introduces C-to-T transition mutations in duplicated DNA sequences and is thought to control the proliferation of selfish repetitive DNA. Here, we determine the taxonomic distribution of hypermutation patterns indicative of RIP among basidiomycetes. We quantify C-to-T transition mutations in particular di- and trinucleotide target sites for TE-like sequences from nine fungal genomes. We find evidence of RIP-like patterns of hypermutation at TpCpG trinucleotide sites in repetitive sequences from all species of the Pucciniomycotina subphylum of the Basidiomycota, Microbotryum lychnidis-dioicae, Puccinia graminis, Melampsora laricis-populina, and Rhodotorula graminis. In contrast, we do not find evidence for RIP-like hypermutation in four species of the Agaricomycotina and Ustilaginomycotina subphyla of the Basidiomycota. Our results suggest that a RIP-like process and the specific nucleotide context for mutations are conserved within the Pucciniomycotina subphylum. These findings imply that coevolutionary interactions between TEs and a hypermutating genome defense are stable over long evolutionary timescales.


Asunto(s)
Basidiomycota/genética , Elementos Transponibles de ADN/genética , Mutación Puntual/genética , Evolución Molecular , Genoma Fúngico/genética
17.
Ecol Evol ; 2(9): 2304-14, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23139888

RESUMEN

The occurrence of multiple pathogen species on a shared host species is unexpected when they exploit the same micro-niche within the host individual. One explanation for such observations is the presence of pathogen-specific resistances segregating within the host population into sites that are differentially occupied by the competing pathogens. This study used experimental inoculations to test whether specific resistances may contribute to the maintenance of two species of anther-smut fungi, Microbotryum silenes-inflatae and Microbotryum lagerheimii, in natural populations of Silene uniflora in England and Wales. Overall, resistance to the two pathogens was strongly positively correlated among host populations and to a lesser degree among host families within populations. A few instances of specific resistance were also observed and confirmed by replicated inoculations. The results suggest that selection for resistance to one pathogen may protect the host from the emergence via host shifts of related pathogen species, and conversely that co-occurrence of two species of pathogens may be dependent on the presence of host genotypes susceptible to both.

18.
Evolution ; 66(11): 3519-33, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23106715

RESUMEN

Parallels have been drawn between the evolution of nonrecombining regions in fungal mating-type chromosomes and animal and plant sex chromosomes, particularly regarding the stages of recombination cessation forming evolutionary strata of allelic divergence. Currently, evidence and explanations for recombination cessation in fungi are sparse, and the presence of evolutionary strata has been examined in a minimal number of fungal taxa. Here, the basidiomycete genus Microbotryum was used to determine the history of recombination cessation for loci on the mating-type chromosomes. Ancestry of linkage with mating type for 13 loci was assessed across 20 species by a phylogenetic method. No locus was found to exhibit trans-specific polymorphism for alternate alleles as old as the mating pheromone receptor, indicating that ages of linkage to mating type varied among the loci. The ordering of loci in the ancestry of linkage to mating type does not agree with their previously proposed assignments to evolutionary strata. This study suggests that processes capable of influencing divergence between alternate alleles may act at loci in the nonrecombining regions (e.g., gene conversion) and encourages further work to dissect the evolutionary processes acting upon genomic regions that determine mating compatibility.


Asunto(s)
Basidiomycota/genética , Evolución Molecular , Proteínas Fúngicas/genética , Genes del Tipo Sexual de los Hongos , Receptores de Feromonas/genética , Alelos , Basidiomycota/fisiología , ADN Complementario/análisis , ADN de Hongos/análisis , Proteínas Fúngicas/metabolismo , Ligamiento Genético , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , Polimorfismo Genético , Receptores de Feromonas/metabolismo , Recombinación Genética , Análisis de Secuencia de ADN , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA