Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 175(7): 1931-1945.e18, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30550790

RESUMEN

Mosquito-borne flaviviruses, including dengue virus (DENV) and Zika virus (ZIKV), are a growing public health concern. Systems-level analysis of how flaviviruses hijack cellular processes through virus-host protein-protein interactions (PPIs) provides information about their replication and pathogenic mechanisms. We used affinity purification-mass spectrometry (AP-MS) to compare flavivirus-host interactions for two viruses (DENV and ZIKV) in two hosts (human and mosquito). Conserved virus-host PPIs revealed that the flavivirus NS5 protein suppresses interferon stimulated genes by inhibiting recruitment of the transcription complex PAF1C and that chemical modulation of SEC61 inhibits DENV and ZIKV replication in human and mosquito cells. Finally, we identified a ZIKV-specific interaction between NS4A and ANKLE2, a gene linked to hereditary microcephaly, and showed that ZIKV NS4A causes microcephaly in Drosophila in an ANKLE2-dependent manner. Thus, comparative flavivirus-host PPI mapping provides biological insights and, when coupled with in vivo models, can be used to unravel pathogenic mechanisms.


Asunto(s)
Virus del Dengue , Dengue , Proteínas de la Membrana , Proteínas Nucleares , Proteínas no Estructurales Virales , Infección por el Virus Zika , Virus Zika , Animales , Línea Celular Tumoral , Culicidae , Dengue/genética , Dengue/metabolismo , Dengue/patología , Virus del Dengue/genética , Virus del Dengue/metabolismo , Virus del Dengue/patogenicidad , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mapeo de Interacción de Proteínas , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Virus Zika/genética , Virus Zika/metabolismo , Virus Zika/patogenicidad , Infección por el Virus Zika/genética , Infección por el Virus Zika/metabolismo , Infección por el Virus Zika/patología
2.
PLoS Pathog ; 19(4): e1011317, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37071661

RESUMEN

Metabolism is key to cellular processes that underlie the ability of a virus to productively infect. Polyamines are small metabolites vital for many host cell processes including proliferation, transcription, and translation. Polyamine depletion also inhibits virus infection via diverse mechanisms, including inhibiting polymerase activity and viral translation. We showed that Coxsackievirus B3 (CVB3) attachment requires polyamines; however, the mechanism was unknown. Here, we report polyamines' involvement in translation, through a process called hypusination, promotes expression of cholesterol synthesis genes by supporting SREBP2 synthesis, the master transcriptional regulator of cholesterol synthesis genes. Measuring bulk transcription, we find polyamines support expression of cholesterol synthesis genes, regulated by SREBP2. Thus, polyamine depletion inhibits CVB3 by depleting cellular cholesterol. Exogenous cholesterol rescues CVB3 attachment, and mutant CVB3 resistant to polyamine depletion exhibits resistance to cholesterol perturbation. This study provides a novel link between polyamine and cholesterol homeostasis, a mechanism through which polyamines impact CVB3 infection.


Asunto(s)
Infecciones por Coxsackievirus , Infecciones por Enterovirus , Enterovirus , Humanos , Enterovirus/metabolismo , Poliaminas/metabolismo , Replicación Viral , Enterovirus Humano B
3.
PLoS Pathog ; 17(11): e1010100, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34797876

RESUMEN

Dengue virus (DENV) disruption of the innate immune response is critical to establish infection. DENV non-structural protein 5 (NS5) plays a central role in this disruption, such as antagonism of STAT2. We recently found that DENV serotype 2 (DENV2) NS5 interacts with Polymerase associated factor 1 complex (PAF1C). The primary members of PAF1C are PAF1, LEO1, CTR9, and CDC73. This nuclear complex is an emerging player in the immune response. It promotes the expression of many genes, including genes related to the antiviral, antimicrobial and inflammatory responses, through close association with the chromatin of these genes. Our previous work demonstrated that NS5 antagonizes PAF1C recruitment to immune response genes. However, it remains unknown if NS5 antagonism of PAF1C is complementary to its antagonism of STAT2. Here, we show that knockout of PAF1 enhances DENV2 infectious virion production. By comparing gene expression profiles in PAF1 and STAT2 knockout cells, we find that PAF1 is necessary to express immune response genes that are STAT2-independent. Finally, we mapped the viral determinants for the NS5-PAF1C protein interaction. We found that NS5 nuclear localization and the C-terminal region of the methyltransferase domain are required for its interaction with PAF1C. Mutation of these regions rescued the expression of PAF1-dependent immune response genes that are antagonized by NS5. In sum, our results support a role for PAF1C in restricting DENV2 replication that NS5 antagonizes through its protein interaction with PAF1C.


Asunto(s)
Dengue/virología , Mutación , Dominios y Motivos de Interacción de Proteínas , Factor de Transcripción STAT2/metabolismo , Fracciones Subcelulares/metabolismo , Factores de Transcripción/metabolismo , Proteínas no Estructurales Virales/metabolismo , Células A549 , Sistemas CRISPR-Cas , Dengue/genética , Dengue/metabolismo , Virus del Dengue/fisiología , Humanos , RNA-Seq , Factor de Transcripción STAT2/antagonistas & inhibidores , Factor de Transcripción STAT2/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Proteínas no Estructurales Virales/genética
4.
BMC Genomics ; 23(1): 787, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36451099

RESUMEN

BACKGROUND: Sitting at the interface of gene expression and host-pathogen interaction, polymerase associated factor 1 complex (PAF1C) is a rising player in the innate immune response. The complex localizes to the nucleus and associates with chromatin to modulate RNA polymerase II (RNAPII) elongation of gene transcripts. Performing this function at both proximal and distal regulatory elements, PAF1C interacts with many host factors across such sites, along with several microbial proteins during infection. Therefore, translating the ubiquity of PAF1C into specific impacts on immune gene expression remains especially relevant. RESULTS: Advancing past work, we treat PAF1 knockout cells with a slate of immune stimuli to identify key trends in PAF1-dependent gene expression with broad analytical depth. From our transcriptomic data, we confirm PAF1 is an activator of traditional immune response pathways as well as other cellular pathways correlated with pathogen defense. With this model, we employ computational approaches to refine how PAF1 may contribute to both gene activation and suppression. Specifically focusing on transcriptional motifs and regulons, we predict gene regulatory elements strongly associated with PAF1, including those implicated in an immune response. Overall, our results suggest PAF1 is involved in innate immunity at several distinct axes of regulation. CONCLUSIONS: By identifying PAF1-dependent gene expression across several pathogenic contexts, we confirm PAF1C to be a key mediator of innate immunity. Combining these transcriptomic profiles with potential regulatory networks corroborates the previously identified functions of PAF1C. With this, we foster new avenues for its study as a regulator of innate immunity, and our results will serve as a basis for targeted study of PAF1C in future validation studies.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Inmunidad Innata/genética , Regulón , Cromatina
5.
Artículo en Inglés | MEDLINE | ID: mdl-30666300

RESUMEN

Studying how arthropod-borne viruses interact with their arthropod vectors is critical to understanding how these viruses replicate and are transmitted. Until recently, these types of studies were limited in scale because of the lack of classical tools available to study virus-host interaction for non-model viruses and non-model organisms. Advances in systems biology "-omics"-based techniques such as next-generation sequencing (NGS) and mass spectrometry can rapidly provide an unbiased view of arbovirus-vector interaction landscapes. In this mini-review, we discuss how arbovirus-vector interaction studies have been advanced by systems biology. We review studies of arbovirus-vector interactions that occur at multiple time and length scales, including intracellular interactions, interactions at the level of the organism, viral and vector populations, and how new techniques can integrate systems-level data across these different scales.


Asunto(s)
Arbovirus/crecimiento & desarrollo , Vectores Artrópodos/inmunología , Vectores Artrópodos/virología , Interacciones Microbiota-Huesped , Biología de Sistemas/métodos , Animales , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Espectrometría de Masas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA