Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(4): e2315330121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38227661

RESUMEN

We demonstrate an indirect, rather than direct, role of quasi-resonant amplification of planetary waves in a summer weather extreme. We find that there was an interplay between a persistent, amplified large-scale atmospheric circulation state and soil moisture feedbacks as a precursor for the June 2021 Pacific Northwest "Heat Dome" event. An extended resonant planetary wave configuration prior to the event created an antecedent soil moisture deficit that amplified lower atmospheric warming through strong nonlinear soil moisture feedbacks, favoring this unprecedented heat event.

2.
Proc Natl Acad Sci U S A ; 119(46): e2203818119, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36343239

RESUMEN

Orbital cyclicity is a fundamental pacemaker of Earth's climate system. The Newark-Hartford Basin (NHB) lake sediment record of eastern North America contains compelling geologic expressions of this cyclicity, reflecting variations of climatic conditions in tropical Pangea during the Late Triassic and earliest Jurassic (~233 to 199 Ma). Climate modeling enables a deeper mechanistic understanding of Earth system modulation during this unique greenhouse and supercontinent period. We link major features of the NHB record to the combined climatic effects of orbital forcing, paleogeographic changes, and atmospheric pCO[Formula: see text] variations. An ensemble of transient, orbitally driven climate simulations is assessed for nine time slices, three atmospheric pCO[Formula: see text] values, and two paleogeographic reconstructions. Climatic transitions from tropical humid to more seasonal and ultimately semiarid are associated with tectonic drift of the NHB from [Formula: see text] to [Formula: see text]. The modeled orbital modulation of the precipitation-evaporation balance is most pronounced during the 220 to 200 Ma interval, whereas it is limited by weak seasonality and increasing aridity before and after this interval. Lower pCO[Formula: see text] at around 205 Ma contributes to drier climates and could have led to the observed damping of sediment cyclicity. Eccentricity-modulated precession dominates the orbitally driven climate response in the NHB region. High obliquity further amplifies summer precipitation through the seasonal shifts in the tropical rainfall belt. Regions with other proxy records are also assessed, providing guidance toward an integrated picture of global astronomical climate forcing in the Late Triassic and ultimately of other periods in Earth history.


Asunto(s)
Planeta Tierra , Lagos , Estaciones del Año
3.
Proc Natl Acad Sci U S A ; 113(25): 6862-7, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27274064

RESUMEN

In boreal spring-to-autumn (May-to-September) 2012 and 2013, the Northern Hemisphere (NH) has experienced a large number of severe midlatitude regional weather extremes. Here we show that a considerable part of these extremes were accompanied by highly magnified quasistationary midlatitude planetary waves with zonal wave numbers m = 6, 7, and 8. We further show that resonance conditions for these planetary waves were, in many cases, present before the onset of high-amplitude wave events, with a lead time up to 2 wk, suggesting that quasiresonant amplification (QRA) of these waves had occurred. Our results support earlier findings of an important role of the QRA mechanism in amplifying planetary waves, favoring recent NH weather extremes.

4.
Proc Natl Acad Sci U S A ; 111(34): 12331-6, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25114245

RESUMEN

The recent decade has seen an exceptional number of high-impact summer extremes in the Northern Hemisphere midlatitudes. Many of these events were associated with anomalous jet stream circulation patterns characterized by persistent high-amplitude quasi-stationary Rossby waves. Two mechanisms have recently been proposed that could provoke such patterns: (i) a weakening of the zonal mean jets and (ii) an amplification of quasi-stationary waves by resonance between free and forced waves in midlatitude waveguides. Based upon spectral analysis of the midtroposphere wind field, we show that the persistent jet stream patterns were, in the first place, due to an amplification of quasi-stationary waves with zonal wave numbers 6-8. However, we also detect a weakening of the zonal mean jet during these events; thus both mechanisms appear to be important. Furthermore, we demonstrate that the anomalous circulation regimes lead to persistent surface weather conditions and therefore to midlatitude synchronization of extreme heat and rainfall events on monthly timescales. The recent cluster of resonance events has resulted in a statistically significant increase in the frequency of high-amplitude quasi-stationary waves of wave numbers 7 and 8 in July and August. We show that this is a robust finding that holds for different pressure levels and reanalysis products. We argue that recent rapid warming in the Arctic and associated changes in the zonal mean zonal wind have created favorable conditions for double jet formation in the extratropics, which promotes the development of resonant flow regimes.

5.
Proc Natl Acad Sci U S A ; 110(14): 5336-41, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23457264

RESUMEN

In recent years, the Northern Hemisphere has suffered several devastating regional summer weather extremes, such as the European heat wave in 2003, the Russian heat wave and the Indus river flood in Pakistan in 2010, and the heat wave in the United States in 2011. Here, we propose a common mechanism for the generation of persistent longitudinal planetary-scale high-amplitude patterns of the atmospheric circulation in the Northern Hemisphere midlatitudes. Those patterns--with zonal wave numbers m = 6, 7, or 8--are characteristic of the above extremes. We show that these patterns might result from trapping within midlatitude waveguides of free synoptic waves with zonal wave numbers k ≈ m. Usually, the quasistationary dynamical response with the above wave numbers m to climatological mean thermal and orographic forcing is weak. Such midlatitude waveguides, however, may favor a strong magnification of that response through quasiresonance.


Asunto(s)
Movimientos del Aire , Atmósfera , Desastres/historia , Modelos Teóricos , Tiempo (Meteorología) , Historia del Siglo XXI
6.
Sci Adv ; 9(37): eadh2458, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37703365

RESUMEN

This planetary boundaries framework update finds that six of the nine boundaries are transgressed, suggesting that Earth is now well outside of the safe operating space for humanity. Ocean acidification is close to being breached, while aerosol loading regionally exceeds the boundary. Stratospheric ozone levels have slightly recovered. The transgression level has increased for all boundaries earlier identified as overstepped. As primary production drives Earth system biosphere functions, human appropriation of net primary production is proposed as a control variable for functional biosphere integrity. This boundary is also transgressed. Earth system modeling of different levels of the transgression of the climate and land system change boundaries illustrates that these anthropogenic impacts on Earth system must be considered in a systemic context.

8.
Paleoceanogr Paleoclimatol ; 36(6): e2020PA004134, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34240008

RESUMEN

The Mesozoic era (∼252 to 66 million years ago) was a key interval in Earth's evolution toward its modern state, witnessing the breakup of the supercontinent Pangaea and significant biotic innovations like the early evolution of mammals. Plate tectonic dynamics drove a fundamental climatic transition from the early Mesozoic supercontinent toward the Late Cretaceous fragmented continental configuration. Here, key aspects of Mesozoic long-term environmental changes are assessed in a climate model ensemble framework. We analyze so far the most extended ensemble of equilibrium climate states simulated for evolving Mesozoic boundary conditions covering the period from 255 to 60 Ma in 5 Myr timesteps. Global mean temperatures are generally found to be elevated above the present and exhibit a baseline warming trend driven by rising sea levels and increasing solar luminosity. Warm (Triassic and mid-Cretaceous) and cool (Jurassic and end-Cretaceous) anomalies result from pCO2 changes indicated by different reconstructions. Seasonal and zonal temperature contrasts as well as continental aridity show an overall decrease from the Late Triassic-Early Jurassic to the Late Cretaceous. Meridional temperature gradients are reduced at higher global temperatures and less land area in the high latitudes. With systematic sensitivity experiments, the influence of paleogeography, sea level, vegetation patterns, pCO2, solar luminosity, and orbital configuration on these trends is investigated. For example, long-term seasonality trends are driven by paleogeography, but orbital cycles could have had similar-scale effects on shorter timescales. Global mean temperatures, continental humidity, and meridional temperature gradients are, however, also strongly affected by pCO2.

9.
Sci Rep ; 8(1): 12375, 2018 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-30120398

RESUMEN

In May-June 2016 the Canadian Province of Alberta suffered one of the most devastating wildfires in its history. Here we show that in mid-April to early May 2016 the large-scale circulation in the mid- and high troposphere of the middle and sub-polar latitudes of the northern hemisphere featured a persistent high-amplitude planetary wave structure dominated by the non-dimensional zonal wave number 4. The strongest anticyclonic wing of this structure was located over western Canada. In combination with a very strong El Niño event in winter 2015/2016 this favored highly anomalous, tinder-dry and high-temperature conditions at the surface in that area, entailing an increased fire hazard there. This critically contributed to the ignition of the Alberta Wildfire in May 2016, appearing to be the costliest disaster in Canadian history thus far.

10.
Sci Adv ; 4(10): eaat3272, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30402537

RESUMEN

Persistent episodes of extreme weather in the Northern Hemisphere summer have been associated with high-amplitude quasi-stationary atmospheric Rossby waves, with zonal wave numbers 6 to 8 resulting from the phenomenon of quasi-resonant amplification (QRA). A fingerprint for the occurrence of QRA can be defined in terms of the zonally averaged surface temperature field. Examining state-of-the-art [Coupled Model Intercomparison Project Phase 5 (CMIP5)] climate model projections, we find that QRA events are likely to increase by ~50% this century under business-as-usual carbon emissions, but there is considerable variation among climate models. Some predict a near tripling of QRA events by the end of the century, while others predict a potential decrease. Models with amplified Arctic warming yield the most pronounced increase in QRA events. The projections are strongly dependent on assumptions regarding the nature of changes in radiative forcing associated with anthropogenic aerosols over the next century. One implication of our findings is that a reduction in midlatitude aerosol loading could actually lead to Arctic de-amplification this century, ameliorating potential increases in persistent extreme weather events.

11.
Sci Adv ; 2(4): e1501428, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27152340

RESUMEN

In May 2014, the Balkans were hit by a Vb-type cyclone that brought disastrous flooding and severe damage to Bosnia and Herzegovina, Serbia, and Croatia. Vb cyclones migrate from the Mediterranean, where they absorb warm and moist air, to the north, often causing flooding in central/eastern Europe. Extreme rainfall events are increasing on a global scale, and both thermodynamic and dynamical mechanisms play a role. Where thermodynamic aspects are generally well understood, there is large uncertainty associated with current and future changes in dynamics. We study the climatic and meteorological factors that influenced the catastrophic flooding in the Balkans, where we focus on large-scale circulation. We show that the Vb cyclone was unusually stationary, bringing extreme rainfall for several consecutive days, and that this situation was likely linked to a quasi-stationary circumglobal Rossby wave train. We provide evidence that this quasi-stationary wave was amplified by wave resonance. Statistical analysis of daily spring rainfall over the Balkan region reveals significant upward trends over 1950-2014, especially in the high quantiles relevant for flooding events. These changes cannot be explained by simple thermodynamic arguments, and we thus argue that dynamical processes likely played a role in increasing flood risks over the Balkans.


Asunto(s)
Cambio Climático , Desastres , Inundaciones , Peninsula Balcánica , Tormentas Ciclónicas , Humanos , Mar Mediterráneo , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA