Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(18): e111807, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37606072

RESUMEN

Cilia are important cellular organelles for signaling and motility and are constructed via intraflagellar transport (IFT). RabL2 is a small GTPase that localizes to the basal body of cilia via an interaction with the centriolar protein CEP19 before downstream association with the IFT machinery, which is followed by initiation of IFT. We reconstituted and purified RabL2 with CEP19 or IFT proteins to show that a reconstituted pentameric IFT complex containing IFT81/74 enhances the GTP hydrolysis rate of RabL2. The binding site on IFT81/74 that promotes GTP hydrolysis in RabL2 was mapped to a 70-amino-acid-long coiled-coil region of IFT81/74. We present structural models for RabL2-containing IFT complexes that we validate in vitro and in cellulo and demonstrate that Chlamydomonas IFT81/74 enhances GTP hydrolysis of human RabL2, suggesting an ancient evolutionarily conserved activity. Our results provide an architectural understanding of how RabL2 is incorporated into the IFT complex and a molecular rationale for why RabL2 dissociates from anterograde IFT trains soon after departure from the ciliary base.


Asunto(s)
Proteínas Activadoras de GTPasa , Transducción de Señal , Humanos , Proteínas Activadoras de GTPasa/genética , Transporte Biológico , Aminoácidos , Guanosina Trifosfato , Proteínas Musculares , Proteínas del Citoesqueleto
2.
EMBO J ; 41(24): e112440, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36354106

RESUMEN

Cilia are ubiquitous eukaryotic organelles impotant for cellular motility, signaling, and sensory reception. Cilium formation requires intraflagellar transport of structural and signaling components and involves 22 different proteins organized into intraflagellar transport (IFT) complexes IFT-A and IFT-B that are transported by molecular motors. The IFT-B complex constitutes the backbone of polymeric IFT trains carrying cargo between the cilium and the cell body. Currently, high-resolution structures are only available for smaller IFT-B subcomplexes leaving > 50% structurally uncharacterized. Here, we used Alphafold to structurally model the 15-subunit IFT-B complex. The model was validated using cross-linking/mass-spectrometry data on reconstituted IFT-B complexes, X-ray scattering in solution, diffraction from crystals as well as site-directed mutagenesis and protein-binding assays. The IFT-B structure reveals an elongated and highly flexible complex consistent with cryo-electron tomographic reconstructions of IFT trains. The IFT-B complex organizes into IFT-B1 and IFT-B2 parts with binding sites for ciliary cargo and the inactive IFT dynein motor, respectively. Interestingly, our results are consistent with two different binding sites for IFT81/74 on IFT88/70/52/46 suggesting the possibility of different structural architectures for the IFT-B1 complex. Our data present a structural framework to understand IFT-B complex assembly, function, and ciliopathy variants.


Asunto(s)
Cilios , Dineínas , Cilios/metabolismo , Dineínas/metabolismo , Transporte Biológico , Sitios de Unión , Modelos Estructurales , Flagelos/metabolismo
3.
Bioessays ; : e2300222, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38991980

RESUMEN

Cilia are slender, micrometer-long organelles present on the surface of eukaryotic cells. They function in signaling and locomotion and are constructed by intraflagellar transport (IFT). The assembly of IFT complexes into so-called IFT trains to initiate ciliary entry at the base of the cilium remains a matter of debate. Here, we use structural modeling to provide an architectural framework for how RabL2 is anchored at the ciliary base via CEP19 before being handed over to IFT trains for ciliary entry. Our models suggest that the N-terminal domain of CEP43 forms a homo-dimer to anchor at the subdistal appendages of cilia through a direct interaction with CEP350. A long linker region separates the N-terminal domain of CEP43 from the C-terminal domain, which captures CEP19 above the subdistal appendages and close to the distal appendages. Furthermore, we present a structural model for how RabL2-CEP19 associates with the IFT-B complex, providing insight into how RabL2 is handed over from CEP19 to the IFT complex. Interestingly, RabL2 association with the IFT-B complex appears to induce a significant conformational change in the IFT complex via a kink in the coiled-coils of the IFT81/74 proteins, which may prime the IFT machinery for entry into cilia.

4.
Elife ; 102021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34734804

RESUMEN

Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence of WDR35, small mutant cilia form but fail to enrich in diverse classes of ciliary membrane proteins. In Wdr35 mouse mutants, the non-core IFT-A components are degraded and core components accumulate at the ciliary base. We reveal deep sequence homology of WDR35 and other IFT-A subunits to α and ß' COPI coatomer subunits and demonstrate an accumulation of 'coat-less' vesicles that fail to fuse with Wdr35 mutant cilia. We determine that recombinant non-core IFT-As can bind directly to lipids and provide the first in situ evidence of a novel coat function for WDR35, likely with other IFT-A proteins, in delivering ciliary membrane cargo necessary for cilia elongation.


Most human cells have at least one small hair-like structure on their surface called a cilium. These structures can act as antennae and allow the cell to sense signals from the rest of the body. To do this, they contain proteins that differ from the rest of the cell. The content of cilia depends on regulated delivery of these proteins in and out of cilia by a process called the intraflagellar transport or IFT, which involves a large complex made of several proteins. This complex shuttles the cargo proteins back and forth between the base and the tip of the cilia. However, ciliary proteins are not produced in the cilia; instead, they are made in a different part of the cell and then they are transported to the ciliary base. At the point where they enter the cilia, they were thought to bind to the assembling IFT 'trains' and be transported across the ciliary gate to the positions where they are needed in cilia. One of the components of the IFT machinery is a protein called WDR35, also known as IFT121. If the gene that codes for this protein is faulty or missing, it results in severe disorders in both humans and mice including a range of potentially lethal skeletal dysplasias. Interestingly, without WDR35, cells cannot build functional cilia. The absence of this protein not only disrupts IFT, stopping certain ciliary proteins and their associated membranes from entering cilia; it also causes a 'traffic jam' with a pile-up of transport intermediates from the place in cell where they are made to the cilia. It is unclear why a mutation in one of the components of the IFT would have this effect, raising the question of whether WDR35, or IFTs a whole, has another role in bringing the cargo proteins into the cilia. To understand this phenomenon, Quidwai et al. analysed the structure of WDR35 and other IFT proteins and found that they are very similar to a protein complex called COPI, which is involved in transporting membrane proteins around the cell. When certain proteins are newly made, they are stored in small lipid bubbles ­ called vesicles ­ that then selectively move to where the proteins are needed. COPI coats these vesicles, helping them get to where they need to go in a process called vesicular transport. Quidwai et al. found that WDR35 and other IFT proteins are able to bind to specific types of lipid molecules, suggesting that they might be assisting in a form of vesicle transport too. Indeed, when mouse cells grown in the lab were genetically engineered so they could not produce WDR35, coatless vesicles accumulated around the base of the cilia. Adding back WDR35 to these mutant cells rescued these defects in vesicle transport to cilia as well as allowed functional cilia to be formed. These results provide evidence that WDR35, likely with other IFT proteins, acts as a COPI-like complex to deliver proteins to growing cilia. Further research will investigate the composition of these vesicles that transport proteins to cilia, and help pinpoint where they originate. Quidwai et al.'s findings not only shed light on how different genetic mutations found in patients with cilia dysfunction affect different steps of transporting proteins to and within cilia. They also increase our understanding of the cellular roadmap by which cells shuttle building blocks around in order to assemble these important 'antennae'.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Cilios/metabolismo , Proteínas del Citoesqueleto/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Animales , Proteínas del Citoesqueleto/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Unión Proteica , Transporte de Proteínas
5.
Protein Sci ; 29(6): 1502-1510, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32239748

RESUMEN

Motile cilia protrude from cell surfaces and are necessary to create movement of cells and fluids in the body. At the molecular level, cilia contain several dynein molecular motor complexes including outer dynein arms (ODAs) that are attached periodically to the ciliary axoneme, where they hydrolyse ATP to create the force required for bending and motility of the cilium. ODAs are preassembled in the cytoplasm and subsequently trafficked into the cilium by the intraflagellar transport (IFT) system. In the case of the green alga Chlamydomonas reinhardtii, the adaptor protein ODA16 binds to ODAs and directly to the IFT complex component IFT46 to facilitate the ciliary import of ODAs. Here, we purified recombinant human IFT46 and ODA16, determined the high-resolution crystal structure of the ODA16 protein, and carried out direct interaction studies of IFT46 and ODA16. The human ODA16 C-terminal 320 residues adopt the fold of an eight-bladed ß-propeller with high overall structural similarity to the Chlamydomonas ODA16. However, the small 80 residue N-terminal domain, which in Chlamydomonas ODA16 is located on top of the ß-propeller and is required to form the binding cleft for IFT46, has no visible electron density in case of the human ODA16 structure. Furthermore, size exclusion chromatography and pull-down experiments failed to detect a direct interaction between human ODA16 and IFT46. These data suggest that additional factors may be required for the ciliary import of ODAs in human cells with motile cilia.


Asunto(s)
Cilios/metabolismo , Dineínas/metabolismo , Proteínas Recombinantes/metabolismo , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/metabolismo , Cilios/química , Cristalografía por Rayos X , Dineínas/química , Dineínas/aislamiento & purificación , Humanos , Modelos Moleculares , Conformación Proteica , Transporte de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA