Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(30): 17891-17902, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32661151

RESUMEN

Keystone species have large ecological effects relative to their abundance and have been identified in many ecosystems. However, global change is pervasively altering environmental conditions, potentially elevating new species to keystone roles. Here, we reveal that a historically innocuous grazer-the marsh crab Sesarma reticulatum-is rapidly reshaping the geomorphic evolution and ecological organization of southeastern US salt marshes now burdened by rising sea levels. Our analyses indicate that sea-level rise in recent decades has widely outpaced marsh vertical accretion, increasing tidal submergence of marsh surfaces, particularly where creeks exhibit morphologies that are unable to efficiently drain adjacent marsh platforms. In these increasingly submerged areas, cordgrass decreases belowground root:rhizome ratios, causing substrate hardness to decrease to within the optimal range for Sesarma burrowing. Together, these bio-physical changes provoke Sesarma to aggregate in high-density grazing and burrowing fronts at the heads of tidal creeks (hereafter, creekheads). Aerial-image analyses reveal that resulting "Sesarma-grazed" creekheads increased in prevalence from 10 ± 2% to 29 ± 5% over the past <25 y and, by tripling creek-incision rates relative to nongrazed creekheads, have increased marsh-landscape drainage density by 8 to 35% across the region. Field experiments further demonstrate that Sesarma-grazed creekheads, through their removal of vegetation that otherwise obstructs predator access, enhance the vulnerability of macrobenthic invertebrates to predation and strongly reduce secondary production across adjacent marsh platforms. Thus, sea-level rise is creating conditions within which Sesarma functions as a keystone species that is driving dynamic, landscape-scale changes in salt-marsh geomorphic evolution, spatial organization, and species interactions.

2.
Oecologia ; 186(3): 621-632, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29357031

RESUMEN

Natural history gave birth to ecology and evolutionary biology, but today its importance is sometimes marginalized. Natural history provides context for ecological research, a concept that we illustrate using a consumer-driven vegetation die-off case study. For three decades, local predator depletion promoted the formation of high-density crab (Sesarma reticulatum) grazing and burrowing fronts, resulting in the spread of vegetation die-off through southern New England and Long Island marshes. We review results from a decade of research on this phenomenon and synthesize these findings with new field surveys, experiments, and historical reconstructions to test the hypothesis that the locations and processes of vegetation die-off and recovery are spatially predictable. We discovered that crab-driven die-off consistently begins on marsh creek heads, where peat and high flow conditions overlap, before spreading to inner creeks following peat availability, stunted cordgrass, and flow. Eventually, die-off eliminates most low marsh vegetation, leaving behind unvegetated substrate too soft to support burrows. Vegetation recovery exhibits the reverse patterns of die-off; it consistently begins in the low marsh within inner creeks, where soft substrate and low flow conditions overlap, before spreading to creek heads. This spatially explicit, substrate-dependent recovery eventually leads to ungrazed cordgrass abutting grazed cordgrass on the high marsh border. We present a conceptual model of die-off through recovery progression to provide managers and landowners with a diagnostic tool for identifying marsh die-off and recovery status. Collectively, this work illustrates the fundamental importance of long-term, natural history-based investigations of ecosystem dynamics in informing ecology, conservation, and management practices.


Asunto(s)
Braquiuros , Humedales , Animales , Ecosistema , New England , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA