Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genet Med ; 23(4): 645-652, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33244165

RESUMEN

PURPOSE: MED12 is a subunit of the Mediator multiprotein complex with a central role in RNA polymerase II transcription and regulation of cell growth, development, and differentiation. This might underlie the variable phenotypes in males carrying missense variants in MED12, including X-linked recessive Ohdo, Lujan, and FG syndromes. METHODS: By international matchmaking we assembled variant and clinical data on 18 females presenting with variable neurodevelopmental disorders (NDDs) and harboring de novo variants in MED12. RESULTS: Five nonsense variants clustered in the C-terminal region, two splice variants were found in the same exon 8 splice acceptor site, and 11 missense variants were distributed over the gene/protein. Protein truncating variants were associated with a severe, syndromic phenotype consisting of intellectual disability (ID), facial dysmorphism, short stature, skeletal abnormalities, feeding difficulties, and variable other abnormalities. De novo missense variants were associated with a less specific, but homogeneous phenotype including severe ID, autistic features, limited speech and variable other anomalies, overlapping both with females with truncating variants as well as males with missense variants. CONCLUSION: We establish de novo truncating variants in MED12 as causative for a distinct NDD and de novo missense variants as causative for a severe, less specific NDD in females.


Asunto(s)
Discapacidad Intelectual , Complejo Mediador/genética , Discapacidad Intelectual Ligada al Cromosoma X , Trastornos del Neurodesarrollo , Femenino , Genes Ligados a X , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Mutación Missense , Trastornos del Neurodesarrollo/genética , Fenotipo , Síndrome
2.
Clin Genet ; 93(5): 1030-1038, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29251763

RESUMEN

Due to small numbers of reported patients with pathogenic variants in single genes, the phenotypic spectrum associated with genes causing neurodevelopmental disorders such as intellectual disability (ID) and autism spectrum disorder is expanding. Among these genes is KLF7 (Krüppel-like factor 7), which is located at 2q33.3 and has been implicated in several developmental processes. KLF7 has been proposed to be a candidate gene for the phenotype of autism features seen in patients with a 2q33.3q34 deletion. Herein, we report 4 unrelated individuals with de novo KLF7 missense variants who share similar clinical features of developmental delay/ID, hypotonia, feeding/swallowing issues, psychiatric features and neuromuscular symptoms, and add to the knowledge about the phenotypic spectrum associated with KLF7 haploinsufficiency.


Asunto(s)
Trastorno del Espectro Autista/genética , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Factores de Transcripción de Tipo Kruppel/genética , Adolescente , Trastorno del Espectro Autista/patología , Trastorno del Espectro Autista/psicología , Niño , Preescolar , Discapacidades del Desarrollo/patología , Discapacidades del Desarrollo/psicología , Femenino , Predisposición Genética a la Enfermedad , Haploinsuficiencia/genética , Humanos , Discapacidad Intelectual/patología , Discapacidad Intelectual/psicología , Masculino , Mutación Missense/genética , Secuenciación del Exoma
3.
Clin Genet ; 93(4): 880-890, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29240241

RESUMEN

Okur-Chung syndrome is a neurodevelopmental condition attributed to germline CSNK2A1 pathogenic missense variants. We present 8 unreported subjects with the above syndrome, who have recognizable dysmorphism, varying degrees of developmental delay and multisystem involvement. Together with 6 previously reported cases, we present a case series of 7 female and 7 male subjects, highlighting the recognizable facial features of the syndrome (microcephaly, hypertelorism, epicanthic fold, ptosis, arched eyebrows, low set ears, ear fold abnormality, broad nasal bridge and round face) as well as frequently occurring clinical features including neurodevelopmental delay (93%), gastrointestinal (57%), musculoskeletal (57%) and immunological (43%) abnormalities. The variants reported in this study are evolutionary conserved and absent in the normal population. We observed that the CSNK2A1 gene is relatively intolerant to missense genetic changes, and most variants are within the protein kinase domain. All except 1 variant reported in this cohort are spatially located on the binding pocket of the holoenzyme. We further provide key recommendations on the management of Okur-Chung syndrome. To conclude, this is the second case series on Okur-Chung syndrome, and an in-depth review of the phenotypic features and genomic findings of the condition with suggestions on clinical management.


Asunto(s)
Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Adolescente , Quinasa de la Caseína II/química , Quinasa de la Caseína II/genética , Niño , Preescolar , Discapacidades del Desarrollo/fisiopatología , Cara/fisiopatología , Femenino , Genotipo , Humanos , Discapacidad Intelectual/fisiopatología , Masculino , Anomalías Musculoesqueléticas/genética , Anomalías Musculoesqueléticas/fisiopatología , Mutación Missense/genética , Trastornos del Neurodesarrollo/fisiopatología , Fenotipo , Conformación Proteica , Pliegue de Proteína , Secuenciación del Exoma/métodos
4.
Clin Genet ; 93(5): 1000-1007, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29393965

RESUMEN

De novo variants in the gene encoding cyclin-dependent kinase 13 (CDK13) have been associated with congenital heart defects and intellectual disability (ID). Here, we present the clinical assessment of 15 individuals and report novel de novo missense variants within the kinase domain of CDK13. Furthermore, we describe 2 nonsense variants and a recurrent frame-shift variant. We demonstrate the synthesis of 2 aberrant CDK13 transcripts in lymphoblastoid cells from an individual with a splice-site variant. Clinical characteristics of the individuals include mild to severe ID, developmental delay, behavioral problems, (neonatal) hypotonia and a variety of facial dysmorphism. Congenital heart defects were present in 2 individuals of the current cohort, but in at least 42% of all known individuals. An overview of all published cases is provided and does not demonstrate an obvious genotype-phenotype correlation, although 2 individuals harboring a stop codons at the end of the kinase domain might have a milder phenotype. Overall, there seems not to be a clinically recognizable facial appearance. The variability in the phenotypes impedes an à vue diagnosis of this syndrome and therefore genome-wide or gene-panel driven genetic testing is needed. Based on this overview, we provide suggestions for clinical work-up and management of this recently described ID syndrome.


Asunto(s)
Proteína Quinasa CDC2/genética , Discapacidades del Desarrollo/genética , Cardiopatías Congénitas/genética , Discapacidad Intelectual/genética , Adolescente , Adulto , Niño , Preescolar , Codón sin Sentido , Discapacidades del Desarrollo/fisiopatología , Exoma/genética , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Cardiopatías Congénitas/fisiopatología , Humanos , Discapacidad Intelectual/fisiopatología , Masculino , Persona de Mediana Edad , Mutación , Fenotipo , Sitios de Empalme de ARN/genética , Adulto Joven
5.
Hum Genet ; 136(2): 179-192, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27848077

RESUMEN

The ubiquitin pathway is an enzymatic cascade including activating E1, conjugating E2, and ligating E3 enzymes, which governs protein degradation and sorting. It is crucial for many physiological processes. Compromised function of members of the ubiquitin pathway leads to a wide range of human diseases, such as cancer, neurodegenerative diseases, and neurodevelopmental disorders. Mutations in the thyroid hormone receptor interactor 12 (TRIP12) gene (OMIM 604506), which encodes an E3 ligase in the ubiquitin pathway, have been associated with autism spectrum disorder (ASD). In addition to autistic features, TRIP12 mutation carriers showed intellectual disability (ID). More recently, TRIP12 was postulated as a novel candidate gene for intellectual disability in a meta-analysis of published ID cohorts. However, detailed clinical information characterizing the phenotype of these individuals was not provided. In this study, we present seven novel individuals with private TRIP12 mutations including two splice site mutations, one nonsense mutation, three missense mutations, and one translocation case with a breakpoint in intron 1 of the TRIP12 gene and clinically review four previously published cases. The TRIP12 mutation-positive individuals presented with mild to moderate ID (10/11) or learning disability [intelligence quotient (IQ) 76 in one individual], ASD (8/11) and some of them with unspecific craniofacial dysmorphism and other anomalies. In this study, we provide detailed clinical information of 11 TRIP12 mutation-positive individuals and thereby expand the clinical spectrum of the TRIP12 gene in non-syndromic intellectual disability with or without ASD.


Asunto(s)
Trastorno Autístico/genética , Proteínas Portadoras/genética , Variación Genética , Discapacidad Intelectual/genética , Ubiquitina-Proteína Ligasas/genética , Adolescente , Trastorno Autístico/diagnóstico , Secuencia de Bases , Niño , Estudios de Cohortes , Femenino , Genoma Humano , Humanos , Discapacidad Intelectual/diagnóstico , Cariotipificación , Masculino , Mutación Missense , Fenotipo , Proteolisis , Empalme del ARN , Análisis de Secuencia de ADN
6.
Clin Genet ; 89(6): 733-8, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26936630

RESUMEN

Missense MECP2 variants can have various phenotypic effects ranging from a normal phenotype to typical Rett syndrome (RTT). In females, the phenotype can also be influenced by the X-inactivation pattern. In this study, we present detailed clinical descriptions of six patients with a rare base-pair substitution affecting Arg309 at the C-terminal end of the transcriptional repression domain (TRD). All patients have intellectual disability and present with some RTT features, but they do not fulfill the clinical criteria for typical or atypical RTT. Most of the patients also have mild facial dysmorphism. Intriguingly, the mother of an affected male patient is an asymptomatic carrier of this variant. It is therefore likely that the p.(Arg309Trp) variation does not necessarily lead to male lethality, and it results in a wide range of clinical features in females, probably influenced by different X-inactivation patterns in target tissues.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Discapacidad Intelectual/genética , Proteína 2 de Unión a Metil-CpG/genética , Mutación Missense , Adolescente , Adulto , Secuencia de Aminoácidos , Sitios de Unión/genética , Análisis Mutacional de ADN/métodos , Femenino , Humanos , Discapacidad Intelectual/patología , Masculino , Fenotipo , Síndrome de Rett/genética , Síndrome de Rett/patología , Homología de Secuencia de Aminoácido
7.
Clin Genet ; 90(5): 413-419, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26752331

RESUMEN

De novo missense mutations and in-frame coding deletions in the X-linked gene SMC1A (structural maintenance of chromosomes 1A), encoding part of the cohesin complex, are known to cause Cornelia de Lange syndrome in both males and females. For a long time, loss-of-function (LoF) mutations in SMC1A were considered incompatible with life, as such mutations had not been reported in neither male nor female patients. However, recently, the authors and others reported LoF mutations in females with intellectual disability (ID) and epilepsy. Here we present the detailed phenotype of two females with de novo LoF mutations in SMC1A, including a de novo mutation of single base deletion [c.2364del, p.(Asn788Lysfs*10)], predicted to result in a frameshift, and a de novo deletion of exon 16, resulting in an out-of-frame mRNA splice product [p.(Leu808Argfs*6)]. By combining our patients with the other recently reported females carrying SMC1A LoF mutations, we ascertained a phenotypic spectrum of (severe) ID, therapy-resistant epilepsy, absence/delay of speech, hypotonia and small hands and feet. Our data show the existence of a novel phenotypic entity - distinct from CdLS - and caused by de novo SMC1A LoF mutations.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Síndrome de Cornelia de Lange/genética , Epilepsia/genética , Discapacidad Intelectual/genética , Adolescente , Síndrome de Cornelia de Lange/fisiopatología , Resistencia a Medicamentos/genética , Epilepsia/tratamiento farmacológico , Epilepsia/fisiopatología , Exones/genética , Femenino , Genes Ligados a X , Humanos , Discapacidad Intelectual/fisiopatología , Masculino , Persona de Mediana Edad , Fenotipo , ARN Mensajero/genética , Eliminación de Secuencia
8.
Hum Genet ; 134(10): 1089-97, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26264464

RESUMEN

KCNH1 mutations have recently been described in six individuals with Temple-Baraitser syndrome (TMBTS) and six individuals with Zimmermann-Laband syndrome (ZLS). TMBTS is characterized by intellectual disability (ID), epilepsy, dysmorphic facial features, broad thumbs and great toes with absent/hypoplastic nails. ZLS is characterized by facial dysmorphism including coarsening of the face and a large nose, gingival enlargement, ID, hypoplasia of terminal phalanges and nails and hypertrichosis. In this study, we present four additional unrelated individuals with de novo KCNH1 mutations from ID cohorts. We report on a novel recurrent pathogenic KCNH1 variant in three individuals and add a fourth individual with a previously TMBTS-associated KCNH1 variant. Neither TMBTS nor ZLS was suspected clinically. KCNH1 encodes a voltage-gated potassium channel, which is not only highly expressed in the central nervous system, but also seems to play an important role during development. Clinical evaluation of our mutation-positive individuals revealed that one of the main characteristics of TMBTS/ZLS, namely the pronounced nail hypoplasia of the great toes and thumbs, can be mild and develop over time. Clinical comparison of all published KCNH1 mutation-positive individuals revealed a similar facial but variable limb phenotype. KCNH1 mutation-positive individuals present with severe ID, neonatal hypotonia, hypertelorism, broad nasal tip, wide mouth, nail a/hypoplasia, a proximal implanted and long thumb and long great toes. In summary, we show that the phenotypic variability of individuals with KCNH1 mutations is more pronounced than previously expected, and we discuss whether KCNH1 mutations allow for "lumping" or for "splitting" of TMBTS and ZLS.


Asunto(s)
Anomalías Múltiples/genética , Anomalías Craneofaciales/genética , Canales de Potasio Éter-A-Go-Go/genética , Fibromatosis Gingival/genética , Hallux/anomalías , Deformidades Congénitas de la Mano/genética , Discapacidad Intelectual/genética , Uñas Malformadas/genética , Pulgar/anomalías , Anomalías Múltiples/patología , Adolescente , Preescolar , Anomalías Craneofaciales/patología , Femenino , Fibromatosis Gingival/patología , Hallux/patología , Deformidades Congénitas de la Mano/patología , Humanos , Discapacidad Intelectual/patología , Mutación Missense , Uñas Malformadas/patología , Pulgar/patología
9.
Clin Genet ; 84(5): 415-21, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23895381

RESUMEN

The availability of commercially produced genomic microarrays has resulted in the wide spread implementation of genomic microarrays, often as a first-tier diagnostic test for copy number variant (CNV) screening of patients who are suspected for chromosomal aberrations. Patients with intellectual disability (ID) and/or multiple congenital anomalies (MCA) were traditionally the main focus for this microarray-based CNV screening, but the application of microarrays to other (neurodevelopmental) disorders and tumor diagnostics has also been explored and implemented. The diagnostic workflow for patients with ID is now well established, relying on the identification of rare CNVs and determining their inheritance patterns. However, experience gained through screening large numbers of samples has revealed many subtleties and complexities of CNV interpretation. This has resulted in a better understanding of the contribution of CNVs to genomic disorders not only via de novo occurrence, but also via X-linked and recessive inheritance models as well as through models taking into account mosaicisms, imprinting, and digenic inheritance. In this review, we discuss CNV interpretation within the context of these different genetic disease models and common pitfalls that can occur when searching for supportive evidence that a CNV is clinically relevant.


Asunto(s)
Anomalías Múltiples/genética , Aberraciones Cromosómicas , Variaciones en el Número de Copia de ADN , Discapacidad Intelectual/genética , Modelos Genéticos , Anomalías Múltiples/diagnóstico , Niño , Bases de Datos Genéticas , Femenino , Genoma Humano , Genómica , Humanos , Patrón de Herencia , Discapacidad Intelectual/diagnóstico , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo
10.
J Med Genet ; 49(2): 104-9, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22180640

RESUMEN

BACKGROUND: Congenital deletions affecting 3q11q23 have rarely been reported and only five cases have been molecularly characterised. Genotype-phenotype correlation has been hampered by the variable sizes and breakpoints of the deletions. In this study, 14 novel patients with deletions in 3q11q23 were investigated and compared with 13 previously reported patients. METHODS: Clinical data were collected from 14 novel patients that had been investigated by high resolution microarray techniques. Molecular investigation and updated clinical information of one cytogenetically previously reported patient were also included. RESULTS: The molecular investigation identified deletions in the region 3q12.3q21.3 with different boundaries and variable sizes. The smallest studied deletion was 580 kb, located in 3q13.31. Genotype-phenotype comparison in 24 patients sharing this shortest region of overlapping deletion revealed several common major characteristics including significant developmental delay, muscular hypotonia, a high arched palate, and recognisable facial features including a short philtrum and protruding lips. Abnormal genitalia were found in the majority of males, several having micropenis. Finally, a postnatal growth pattern above the mean was apparent. The 580 kb deleted region includes five RefSeq genes and two of them are strong candidate genes for the developmental delay: DRD3 and ZBTB20. CONCLUSION: A newly recognised 3q13.31 microdeletion syndrome is delineated which is of diagnostic and prognostic value. Furthermore, two genes are suggested to be responsible for the main phenotype.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 3 , Discapacidades del Desarrollo/genética , Facies , Genitales Masculinos/anomalías , Trastornos del Crecimiento/genética , Discapacidades del Desarrollo/diagnóstico , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Proteínas del Tejido Nervioso/genética , Receptores de Dopamina D3/genética , Síndrome , Factores de Transcripción/genética
11.
Cytogenet Genome Res ; 135(3-4): 212-21, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21934286

RESUMEN

Array-based comparative genomic hybridization analysis of genomic DNA was first applied in postnatal diagnosis for patients with intellectual disability (ID) and/or congenital anomalies (CA). Genome-wide single-nucleotide polymorphism (SNP) array analysis was subsequently implemented as the first line diagnostic test for ID/CA patients in our laboratory in 2009, because its diagnostic yield is significantly higher than that of routine cytogenetic analysis. In addition to the detection of copy number variations, the genotype information obtained with SNP array analysis enables the detection of stretches of homozygosity and thereby the possible identification of recessive disease genes, mosaic aneuploidy, or uniparental disomy. Patient-parent (trio) information analysis is used to screen for the presence of any form of uniparental disomy in the patient and can determine the parental origin of a de novo copy number variation. Moreover, the outcome of a genotype analysis is used as a final quality control by ruling out potential sample mismatches due to non-paternity or sample mix-up. SNP array analysis is now also used in our laboratory for patients with disorders for which locus heterogeneity is known (homozygosity pre-screening), in prenatal diagnosis in case of structural ultrasound anomalies, and for patients with leukemia. In this report, we summarize our array findings and experiences in the various diagnostic applications and demonstrate the power of a SNP-based array platform for molecular karyotyping, because it not only significantly improves the diagnostic yield in both constitutional and cancer genome diagnostics, but it also enhances the quality of the diagnostic laboratory workflow.


Asunto(s)
Hibridación Genómica Comparativa/métodos , Variaciones en el Número de Copia de ADN , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Polimorfismo de Nucleótido Simple , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Hibridación Genómica Comparativa/normas , Anomalías Congénitas/diagnóstico , Anomalías Congénitas/genética , Interpretación Estadística de Datos , Femenino , Genotipo , Homocigoto , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos/normas , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Embarazo , Diagnóstico Prenatal/métodos , Valores de Referencia
12.
J Med Genet ; 47(9): 586-94, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20577003

RESUMEN

BACKGROUND: The implementation of microarray analysis in prenatal diagnostics is a topic of discussion, as rare copy number variants with unknown/uncertain clinical consequences are likely to be found. The application of targeted microarrays limits such findings, but the potential disadvantage is that relevant, so far unknown, aberrations might be overlooked. Therefore, we explore the possibilities for the prenatal application of the genome-wide 250k single nucleotide polymorphism array platform. METHODS: Affymetrix 250k NspI single nucleotide polymorphism array analysis (Affymetrix, Inc., Santa Clara, California, USA) was performed on DNA from 38 prenatally karyotyped fetuses with ultrasound anomalies. Analyses were performed after termination of pregnancy, intrauterine fetal death or birth on DNA isolated from fetal or neonatal material. RESULTS: Aberrations were detected in 17 of 38 fetuses, 6 of whom with a previously identified chromosomal abnormality and 11 with previously normal or balanced karyotypes. Of the latter, the detected aberration occurred de novo and was considered of clinical relevance in five cases (16%), inherited from a healthy parent in four cases (12%), and de novo yet with unclear clinical relevance in two cases (6%). The clinically relevant abnormalities either were novel copy number variants (n=3) or concerned a uniparental disomy (n=2). CONCLUSION: In at least 16% of fetuses with ultrasound anomalies and a normal or balanced karyotype, causal (submicroscopic) aberrations were detected, illustrating the importance of the (careful) implementation of microarray analysis in prenatal diagnosis. The fact that the identified, clinically relevant, aberrations would have gone undetected with most targeted approaches underscores the added value of a genome-wide approach.


Asunto(s)
Aberraciones Cromosómicas , Feto/patología , Genoma Humano/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple/genética , Ultrasonografía Prenatal , Disomía Uniparental/genética , Emparejamiento Base/genética , Cromosomas Humanos/genética , Variaciones en el Número de Copia de ADN/genética , Femenino , Homocigoto , Humanos , Recién Nacido , Embarazo , Disomía Uniparental/diagnóstico
13.
J Med Genet ; 46(9): 598-606, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19264732

RESUMEN

BACKGROUND: The 9q subtelomeric deletion syndrome (9qSTDS) is clinically characterised by moderate to severe mental retardation, childhood hypotonia and facial dysmorphisms. In addition, congenital heart defects, urogenital defects, epilepsy and behavioural problems are frequently observed. The syndrome can be either caused by a submicroscopic 9q34.3 deletion or by intragenic EHMT1 mutations leading to haploinsufficiency of the EHMT1 gene. So far it has not been established if and to what extent other genes in the 9q34.3 region contribute to the phenotype observed in deletion cases. This study reports the largest cohort of 9qSTDS cases so far. METHODS AND RESULTS: By a multiplex ligation dependent probe amplification (MLPA) approach, the authors identified and characterised 16 novel submicroscopic 9q deletions. Direct sequence analysis of the EHMT1 gene in 24 patients exhibiting the 9qSTD phenotype without such deletion identified six patients with an intragenic EHMT1 mutation. Five of these mutations predict a premature termination codon whereas one mutation gives rise to an amino acid substitution in a conserved domain of the protein. CONCLUSIONS: The data do not provide any evidence for phenotype-genotype correlations between size of the deletions or type of mutations and severity of clinical features. Therefore, the authors confirm the EHMT1 gene to be the major determinant of the 9qSTDS phenotype. Interestingly, five of six patients who had reached adulthood had developed severe psychiatric pathology, which may indicate that EHMT1 haploinsufficiency is associated with neurodegeneration in addition to neurodevelopmental defect.


Asunto(s)
Anomalías Múltiples/genética , Cromosomas Humanos Par 9 , N-Metiltransferasa de Histona-Lisina/genética , Discapacidad Intelectual/genética , Eliminación de Secuencia , Telómero/genética , Anomalías Múltiples/metabolismo , Adolescente , Adulto , Secuencia de Aminoácidos , Niño , Preescolar , Femenino , Haploidia , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Discapacidad Intelectual/metabolismo , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Fenotipo , Alineación de Secuencia , Síndrome
14.
J Med Genet ; 46(8): 511-23, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19372089

RESUMEN

BACKGROUND: Recurrent 15q13.3 microdeletions were recently identified with identical proximal (BP4) and distal (BP5) breakpoints and associated with mild to moderate mental retardation and epilepsy. METHODS: To assess further the clinical implications of this novel 15q13.3 microdeletion syndrome, 18 new probands with a deletion were molecularly and clinically characterised. In addition, we evaluated the characteristics of a family with a more proximal deletion between BP3 and BP4. Finally, four patients with a duplication in the BP3-BP4-BP5 region were included in this study to ascertain the clinical significance of duplications in this region. RESULTS: The 15q13.3 microdeletion in our series was associated with a highly variable intra- and inter-familial phenotype. At least 11 of the 18 deletions identified were inherited. Moreover, 7 of 10 siblings from four different families also had this deletion: one had a mild developmental delay, four had only learning problems during childhood, but functioned well in daily life as adults, whereas the other two had no learning problems at all. In contrast to previous findings, seizures were not a common feature in our series (only 2 of 17 living probands). Three patients with deletions had cardiac defects and deletion of the KLF13 gene, located in the critical region, may contribute to these abnormalities. The limited data from the single family with the more proximal BP3-BP4 deletion suggest this deletion may have little clinical significance. Patients with duplications of the BP3-BP4-BP5 region did not share a recognisable phenotype, but psychiatric disease was noted in 2 of 4 patients. CONCLUSIONS: Overall, our findings broaden the phenotypic spectrum associated with 15q13.3 deletions and suggest that, in some individuals, deletion of 15q13.3 is not sufficient to cause disease. The existence of microdeletion syndromes, associated with an unpredictable and variable phenotypic outcome, will pose the clinician with diagnostic difficulties and challenge the commonly used paradigm in the diagnostic setting that aberrations inherited from a phenotypically normal parent are usually without clinical consequences.


Asunto(s)
Aberraciones Cromosómicas , Deleción Cromosómica , Trastornos de los Cromosomas/genética , Cromosomas Humanos Par 15/genética , Duplicación de Gen , Adolescente , Adulto , Niño , Preescolar , Trastornos de los Cromosomas/patología , Femenino , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Linaje , Embarazo , Síndrome
15.
J Med Genet ; 45(2): 81-6, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17873121

RESUMEN

AIM AND METHOD: We analysed DNA samples isolated from individuals born with cleft lip and cleft palate to identify deletions and duplications of candidate gene loci using array comparative genomic hybridisation (array-CGH). RESULTS: Of 83 syndromic cases analysed we identified one subject with a previously unknown 2.7 Mb deletion at 22q11.21 coinciding with the DiGeorge syndrome region. Eighteen of the syndromic cases had clinical features of Van der Woude syndrome and deletions were identified in five of these, all of which encompassed the interferon regulatory factor 6 (IRF6) gene. In a series of 104 non-syndromic cases we found one subject with a 3.2 Mb deletion at chromosome 6q25.1-25.2 and another with a 2.2 Mb deletion at 10q26.11-26.13. Analyses of parental DNA demonstrated that the two deletion cases at 22q11.21 and 6q25.1-25.2 were de novo, while the deletion of 10q26.11-26.13 was inherited from the mother, who also has a cleft lip. These deletions appear likely to be causally associated with the phenotypes of the subjects. Estrogen receptor 1 (ESR1) and fibroblast growth factor receptor 2 (FGFR2) genes from the 6q25.1-25.2 and 10q26.11-26.13, respectively, were identified as likely causative genes using a gene prioritization software. CONCLUSION: We have shown that array-CGH analysis of DNA samples derived from cleft lip and palate subjects is an efficient and productive method for identifying candidate chromosomal loci and genes, complementing traditional genetic mapping strategies.


Asunto(s)
Labio Leporino/genética , Fisura del Paladar/genética , Secuencia de Bases , Niño , Deleción Cromosómica , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos/genética , Cromosomas Humanos Par 10/genética , Cromosomas Humanos Par 22/genética , Cromosomas Humanos Par 6/genética , ADN/genética , Femenino , Dosificación de Gen , Variación Genética , Humanos , Masculino , Hibridación de Ácido Nucleico , Fenotipo , Síndrome
16.
J Med Genet ; 45(6): 346-54, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18178631

RESUMEN

BACKGROUND: Patients with a microscopically visible deletion of the distal part of the long arm of chromosome 1 have a recognisable phenotype, including mental retardation, microcephaly, growth retardation, a distinct facial appearance and various midline defects including corpus callosum abnormalities, cardiac, gastro-oesophageal and urogenital defects, as well as various central nervous system anomalies. Patients with a submicroscopic, subtelomeric 1qter deletion have a similar phenotype, suggesting that the main phenotype of these patients is caused by haploinsufficiency of genes in this region. OBJECTIVE: To describe the clinical presentation of 13 new patients with a submicroscopic deletion of 1q43q44, of which nine were interstitial, and to report on the molecular characterisation of the deletion size. RESULTS AND CONCLUSIONS: The clinical presentation of these patients has clear similarities with previously reported cases with a terminal 1q deletion. Corpus callosum abnormalities were present in 10 of our patients. The AKT3 gene has been reported as an important candidate gene causing this abnormality. However, through detailed molecular analysis of the deletion sizes in our patient cohort, we were able to delineate the critical region for corpus callosum abnormalities to a 360 kb genomic segment which contains four possible candidate genes, but excluding the AKT3 gene.


Asunto(s)
Agenesia del Cuerpo Calloso , Deleción Cromosómica , Cromosomas Humanos Par 1/genética , Adolescente , Adulto , Niño , Preescolar , Familia , Femenino , Humanos , Lactante , Masculino , Síndrome
17.
J Med Genet ; 45(11): 710-20, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18628315

RESUMEN

BACKGROUND: The chromosome 17q21.31 microdeletion syndrome is a novel genomic disorder that has originally been identified using high resolution genome analyses in patients with unexplained mental retardation. AIM: We report the molecular and/or clinical characterisation of 22 individuals with the 17q21.31 microdeletion syndrome. RESULTS: We estimate the prevalence of the syndrome to be 1 in 16,000 and show that it is highly underdiagnosed. Extensive clinical examination reveals that developmental delay, hypotonia, facial dysmorphisms including a long face, a tubular or pear-shaped nose and a bulbous nasal tip, and a friendly/amiable behaviour are the most characteristic features. Other clinically important features include epilepsy, heart defects and kidney/urologic anomalies. Using high resolution oligonucleotide arrays we narrow the 17q21.31 critical region to a 424 kb genomic segment (chr17: 41046729-41470954, hg17) encompassing at least six genes, among which is the gene encoding microtubule associated protein tau (MAPT). Mutation screening of MAPT in 122 individuals with a phenotype suggestive of 17q21.31 deletion carriers, but who do not carry the recurrent deletion, failed to identify any disease associated variants. In five deletion carriers we identify a <500 bp rearrangement hotspot at the proximal breakpoint contained within an L2 LINE motif and show that in every case examined the parent originating the deletion carries a common 900 kb 17q21.31 inversion polymorphism, indicating that this inversion is a necessary factor for deletion to occur (p<10(-5)). CONCLUSION: Our data establish the 17q21.31 microdeletion syndrome as a clinically and molecularly well recognisable genomic disorder.


Asunto(s)
Anomalías Múltiples , Deleción Cromosómica , Cromosomas Humanos Par 17/genética , Discapacidades del Desarrollo , Anomalías Múltiples/epidemiología , Anomalías Múltiples/genética , Anomalías Múltiples/fisiopatología , Adolescente , Adulto , Niño , Preescolar , Inversión Cromosómica , Discapacidades del Desarrollo/epidemiología , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/fisiopatología , Cara/patología , Femenino , Humanos , Lactante , Masculino , Hipotonía Muscular/epidemiología , Hipotonía Muscular/genética , Hipotonía Muscular/fisiopatología , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple , Prevalencia , Adulto Joven , Proteínas tau
18.
Clin Genet ; 74(6): 531-8, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18798846

RESUMEN

Cornelia de Lange syndrome (CdLS) is a rare, multiple congenital anomaly/mental retardation syndrome characterized by varied clinical signs including facial dysmorphism, pre- and post-natal growth defects, small hands and malformations of the upper limbs. Established genetic causes include mutations in the NIPBL (50-60%), SMC1L1 and SMC3 (5%) genes. To detect chromosomal rearrangements pointing to novel positional candidate CdLS genes, we used array-CGH to analyze a subgroup of 24 CdLS patients negative for mutations in the NIPBL and SMC1L1 genes. We identified three carriers of DNA copy number alterations, including a de novo 15q26.2-qter 8-Mb deletion, and two inherited 13q14.2-q14.3 1-Mb deletion and 13q21.32-q21.33 1.5-Mb duplication, not reported among copy number variants. The clinical presentation of all three patients matched the diagnostic criteria for CdLS, and the phenotype of the patient with the 15qter deletion is compared to that of both CdLS and 15qter microdeletion patients.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Síndrome de Cornelia de Lange/genética , Genoma Humano/genética , Proteínas/genética , Deleción Cromosómica , Hibridación Genómica Comparativa , Femenino , Humanos , Masculino , Mutación
19.
Oncogene ; 25(10): 1571-83, 2006 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-16247447

RESUMEN

Identification of genetic copy number changes in glial tumors is of importance in the context of improved/refined diagnostic, prognostic procedures and therapeutic decision-making. In order to detect recurrent genomic copy number changes that might play a role in glioma pathogenesis and/or progression, we characterized 25 primary glioma cell lines including 15 non glioblastoma (non GBM) (I-III WHO grade) and 10 GBM (IV WHO grade), by array comparative genomic hybridization, using a DNA microarray comprising approx. 3500 BACs covering the entire genome with a 1 Mb resolution and additional 800 BACs covering chromosome 19 at tiling path resolution. Combined evaluation by single clone and whole chromosome analysis plus 'moving average (MA) approach' enabled us to confirm most of the genetic abnormalities previously identified to be associated with glioma progression, including +1q32, +7, -10, -22q, PTEN and p16 loss, and to disclose new small genomic regions, some correlating with grade malignancy. Grade I-III gliomas exclusively showed losses at 3p26 (53%), 4q13-21 (33%) and 7p15-p21 (26%), whereas only GBMs exhibited 4p16.1 losses (40%). Other recurrent imbalances, such as losses at 4p15, 5q22-q23, 6p23-25, 12p13 and gains at 11p11-q13, were shared by different glioma grades. Three intervals with peak of loss could be further refined for chromosome 10 by our MA approach. Data analysis of full-coverage chromosome 19 highlighted two main regions of copy number gain, never described before in gliomas, at 19p13.11 and 19q13.13-13.2. The well-known 19q13.3 loss of heterozygosity area in gliomas was not frequently affected in our cell lines. Genomic hotspot detection facilitated the identification of small intervals resulting in positional candidate genes such as PRDM2 (1p36.21), LRP1B (2q22.3), ADARB2 (10p15.3), BCCIP (10q26.2) and ING1 (13q34) for losses and ECT2 (3q26.3), MDK, DDB2, IG20 (11p11.2) for gains. These data increase our current knowledge about cryptic genetic changes in gliomas and may facilitate the further identification of novel genetic elements, which may provide us with molecular tools for the improved diagnostics and therapeutic decision-making in these tumors.


Asunto(s)
Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Perfilación de la Expresión Génica , Genómica , Glioblastoma/genética , Glioblastoma/patología , Glioma/genética , Línea Celular Tumoral , Transformación Celular Neoplásica/metabolismo , Mapeo Cromosómico , Progresión de la Enfermedad , Dosificación de Gen/genética , Tamización de Portadores Genéticos , Marcadores Genéticos , Genómica/métodos , Glioblastoma/metabolismo , Glioma/metabolismo , Glioma/patología , Homocigoto , Humanos , Hibridación de Ácido Nucleico , Proteómica/métodos
20.
J Clin Invest ; 98(6): 1389-99, 1996 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-8823304

RESUMEN

Skin-derived antileukoproteinase (SKALP), also known as elafin, is a serine proteinase inhibitor first discovered in keratinocytes from hyperproliferative human epidermis. In addition to the proteinase inhibiting domain which is directed against polymorphonuclear leukocyte (PMN) derived enzymes such as elastase and proteinase 3, SKALP contains multiple transglutaminase (TGase) substrate domains which enable crosslinking to extracellular and cell envelope proteins. Here we show that SKALP is constitutively expressed in several epithelia that are continuously subjected to inflammatory stimuli, such as the oral cavity and the vagina where it co-localizes with type 1 TGase. All epithelia from sterile body cavities are negative for SKALP. In general, stratified squamous epithelia are positive, whereas pseudostratified epithelia, simple/glandular epithelia and normal epidermis are negative. SKALP was found in fetal tissues of the oral cavity from 17 wk gestation onwards where it continued to be expressed up to adult life. Remarkably, in fetal epidermis SKALP was found from week 28 onwards, but was downregulated to undetectable levels in neonatal skin within three months, suggesting a role during pregnancy in feto-maternal interactions or in the early maturation phase of the epidermis. Immunoelectron microscopy revealed the presence of SKALP in secretory vesicles including the lamellar granules. In culture models for epidermal keratinocytes we found that expression of the endogenous SKALP gene provided protection against cell detachment caused by purified elastase or activated PMNs. Addition of exogenous recombinant SKALP fully protected the keratinocytes against PMN-dependent detachment whereas superoxide dismutase and catalase were only marginally effective. These findings strongly suggest that the constitutive expression of SKALP in squamous epithelia, and the inducible expression in epidermis participate in the control of epithelial integrity, by inhibiting PMN derived proteinases.


Asunto(s)
Inflamación/metabolismo , Biosíntesis de Proteínas , Proteínas/metabolismo , Adulto , Northern Blotting , Células Cultivadas , Sondas de ADN/genética , Exposición a Riesgos Ambientales , Células Epidérmicas , Epidermis/metabolismo , Epitelio/inmunología , Epitelio/metabolismo , Epitelio/ultraestructura , Femenino , Feto/metabolismo , Humanos , Inmunohistoquímica , Hibridación in Situ , Microscopía Inmunoelectrónica , Boca/inmunología , Plásmidos , Embarazo , Proteínas Inhibidoras de Proteinasas Secretoras , Proteínas/inmunología , ARN/metabolismo , Proteínas Recombinantes/inmunología , Vagina/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA