Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Pharmaceutics ; 16(4)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38675224

RESUMEN

Lipid nanoparticles (LNPs) have established their position as nonviral vectors for gene therapy. Tremendous efforts have been made to modulate the properties of LNPs to unleash their full clinical potential. Among the strategies being pursued, the layer-by-layer (LbL) technique has gained considerable attention in the biomedical field. Illuminated by our previous work, here we investigate if the LbL approach could be used to modify the LNP cores formulated with three different ionizable lipids: DODMA, MC3, and DODAP. Additionally, we wondered if more than three layers could be loaded onto LNPs without disrupting their gene transfection ability. Taking advantage of physicochemical analysis, as well as uptake and gene silencing studies, we demonstrate the feasibility of modifying the surface of LNPs with the LbL assembly. Precisely, we successfully modified three different LNPs using the layer-by-layer strategy which abrogated luciferase activity in vitro. Additionally, we constructed a 5×-layered HA-LNP containing the MC3 ionizable lipid which outperformed the 3×-layered counterpart in transfecting miRNA-181-5p to the pediatric GBM cell line, as a proof-of-concept in vitro experiment. The method used herein has been proven reproducible, of easy modification to adapt to different ionizable lipid-containing LNPs, and holds great potential for the translation of RNA-based therapeutic strategies.

2.
Biomaterials ; 302: 122341, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37778056

RESUMEN

Glioblastoma multiforme (GBM) is the most common and lethal primary brain cancer. Current pharmacological interventions marginally increase the 12-month overall survival of patients with GBM. Among the novel therapeutic strategies being pursued, micro-RNAs, a class of non-coding RNAs, are receiving considerable attention for their regulation of several pathways implicated in tumorigenesis and survival. Notably, microRNA-181a-5p (miR-181a) has consistently been reported to be downregulated in GBM clinical samples, and its overexpression negatively affects tumor growth both in vitro and in vivo. To improve the delivery of miR-181a to GBM cells, we sought to develop a modified lipid-based nanocarrier capable of encapsulating and delivering miR-181a to GBM cells in vitro and in vivo. Optimized ionizable-lipid containing lipid nanoparticles (LNP) were constructed by covering the miR-181a-loaded LNP with alternating layers of miR-181a, poly-l-arginine and hyaluronic acid through the layer-by-layer technique. The resulting hyaluronan-decorated lipid nanoparticles (HA-LNP) targeted GBM cells more efficiently than non-modified LNP and mediated siRNA and miRNA transfection in vitro. Finally, delivery of miR-181a by HA-LNP induced significant cellular death of U87 GBM cells in vitro and delayed tumor growth in an in vivo subcutaneous tumor model.


Asunto(s)
Glioblastoma , MicroARNs , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Glioblastoma/metabolismo , Ácido Hialurónico , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Lípidos , Proliferación Celular
3.
ACS Macro Lett ; 12(11): 1589-1594, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37942990

RESUMEN

Multicompartment particles have been produced to date by the self-assembly of linear multiblock polymers. Besides the large diversity of structures that can be obtained with this approach, these are highly sensitive to dilution and environmental factors. Here we show that using core-shell bottlebrush polymers with a hydrophobic polyester core as starting materials it is possible to create compartmentalized particles from the micrometer size down to the molecular scale. These polymers can be used as building blocks to create multicompartment particles and networks via a self-assembly process. The polymers can encapsulate active compounds and slowly degrade in water into polymeric micelles, making them promising materials for drug delivery applications.

4.
Carbohydr Polym ; 260: 117812, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33712157

RESUMEN

A dual pH-/thermo-responsive hydrogel was designed based on a polyelectrolyte complex of polyacrylic acid (PAA) and norbornene-functionalized chitosan (CsNb), which was synergized with chemical crosslinking using bistetrazine-poly(N-isopropyl acrylamide) (bisTz-PNIPAM). The thermo-responsive polymeric crosslinker, bisTz-PNIPAM, was synthesized via reversible addition-fragmentation transfer polymerization of NIPAM. FTIR, XRD, rheological and morphological analyses demonstrated the successful formation of the polyelectrolyte network. The highly porous structure generated through the in-situ "click" reaction between Tz and Nb resulted in a higher drug loading (29.35 %). The hydrogel (COOH/NH2 mole ratio of 3:1) exhibited limited drug release (8.5 %) of 5-ASA at a pH of 2.2, but it provided an almost complete release (92 %) at pH 7.4 and 37 °C within 48 h due to the pH responsiveness of PAA, hydrogel porosity, and shrinkage behavior of PNIPAM. The hydrogels were biodegradable and non-toxic against human fibroblast cells, suggesting their considerable potential for a colon-targeted drug delivery system.


Asunto(s)
Quitosano/química , Portadores de Fármacos/química , Hidrogeles/química , Resinas Acrílicas/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Química Clic , Portadores de Fármacos/toxicidad , Liberación de Fármacos , Humanos , Hidrogeles/farmacología , Concentración de Iones de Hidrógeno , Mesalamina/química , Mesalamina/metabolismo , Porosidad , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA