RESUMEN
Tissue engineering is a steadily growing field of research due to its wide-ranging applicability in the field of regenerative medicine. Application-dependent mechanical properties of a scaffold material as well as its biocompatibility and tailored functionality represent particular challenges. Here the properties of fibrin-based hydrogels reinforced by functional cytocompatible poly(N-vinylcaprolactam)-based (PVCL) microgels are studied and evaluated. The employment of temperature-responsive microgels decorated by epoxy groups for covalent binding to the fibrin is studied as a function of cross-linking degree within the microgels, microgel concentration, as well as temperature. Rheology reveals a strong correlation between the mechanical properties of the reinforced fibrin-based hydrogels and the microgel rigidity and concentration. The incorporated microgels serve as cross-links, which enable temperature-responsive behavior of the hydrogels, and slow down the hydrogel degradation. Microgels can be additionally used as carriers for active drugs, as demonstrated for dexamethasone. The microgels' temperature-responsiveness allows for triggered release of payload, which is monitored using a bioassay. The cytocompatibility of the microgel-reinforced fibrin-based hydrogels is demonstrated by LIVE/DEAD staining experiments using human mesenchymal stem cells. The microgel-reinforced hydrogels are a promising material for tissue engineering, owing to their superior mechanical performance and stability, possibility of drug release, and retained biocompatibility.
Asunto(s)
Fibrina , Hidrogeles , Células Madre Mesenquimatosas , Microgeles , Hidrogeles/química , Fibrina/química , Humanos , Microgeles/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Temperatura , Reología , Dexametasona/química , Dexametasona/farmacología , Ingeniería de Tejidos/métodos , Caprolactama/química , Caprolactama/análogos & derivados , Sistemas de Liberación de Medicamentos , Polímeros/químicaRESUMEN
In this report, a versatile method is demonstrated to create colloidal suprastructures by assembly and supramolecular interlinking of microgels using droplet-based microfluidics. The behavior of the microgels is systematically investigated to evaluate the influence of their concentration on their distribution between the continuous, the droplet phase, and the interface. At low concentrations, microgels are mainly localized at the water-oil interface whereas an excess of microgels results, following the complete coverage of the water-oil interface, in their distribution in the continuous phase. To stabilize the colloidal suprastructure, on-chip gelation is introduced by adding natural polyphenol tannic acid (TA) in the water phase. TA forms interparticle linking between the poly(N-vinylcaprolactam) (PVCL) microgels by supramolecular interactions. The combination of supramolecular interlinking with the variation of the microgel concentration in microfluidic droplets enables on-chip fabrication of defined colloidal suprastructures with morphologies ranging from colloidosomes to colloidal supraballs. The obtained supracolloidal structures exhibit a pH-responsive behavior with a disintegration at alkaline conditions within a scale of seconds. The destabilization process results from the deprotonation of phenolic groups and destruction of hydrogen bonds with PVCL chains at higher pH.
RESUMEN
Stimuli-responsive microgels with ionizable functional groups offer versatile applications, e.g., by the uptake of oppositely charged metal ions or guest molecules such as drugs, dyes, or proteins. Furthermore, the incorporation of carboxylic groups enhances mucoadhesive properties, crucial for various drug delivery applications. In this work, we successfully synthesized poly{N-vinylcaprolactam-2,2'-[(5-acrylamido-1-carboxypentyl)azanediyl]diacetic acid} [p(VCL/NTAaa)] microgels containing varying amounts of nitrilotriacetic acid (NTA) using precipitation polymerization. We performed fundamental characterization by infrared (IR) spectroscopy and dynamic and electrophoretic light scattering. Despite their potential multiresponsiveness, prior studies on NTA-functionalized microgels lack in-depth analysis of their stimuli-responsive behavior. This work addresses this gap by assessing the microgel responsiveness to temperature, ionic strength, and pH. Morphological investigations were performed via NMR relaxometry, nanoscale imaging (AFM and SEM), and reaction calorimetry. Finally, we explored the potential application of the microgels by conducting cytocompatibility experiments and demonstrating the immobilization of the model protein cytochrome c in the microgels.
Asunto(s)
Microgeles , Microgeles/química , Ácido Nitrilotriacético , Sistemas de Liberación de Medicamentos , Temperatura , CalorimetríaRESUMEN
Glycans, composed of linked monosaccharides, play crucial roles in biology and find diverse applications. Enhancing their enzymatic synthesis can be achieved by immobilizing enzymes on materials such as microgels. Here, we present microgels with immobilized glycosyltransferases, synthesized through droplet microfluidics, immobilizing enzymes either via encapsulation or postattachment. SpyTag-SpyCatcher interaction was used for enzyme binding, among others. Fluorescamine and permeability assays confirmed enzyme immobilization and microgel porosity, while enzymatic activities were determined using HPLC. The potential application of microgels in cascade reactions involving multiple enzymes was demonstrated by combining ß4GalT and α3GalT in an enzymatic reaction with high yields. Moreover, a cascade of ß4GalT and ß3GlcNAcT was successfully implemented. These results pave the way toward a modular membrane bioreactor for automated glycan synthesis containing the presented biocatalytic microgels.
Asunto(s)
Enzimas Inmovilizadas , Glicosiltransferasas , Microgeles , Polisacáridos , Enzimas Inmovilizadas/química , Polisacáridos/química , Glicosiltransferasas/metabolismo , Glicosiltransferasas/química , Microgeles/química , BiocatálisisRESUMEN
Biomedical applications such as drug delivery, tissue engineering, and functional surface coating rely on switchable adsorption and desorption of specialized guest molecules. Poly(dehydroalanine), a polyzwitterion containing pH-dependent positive and negative charges, shows promise for such reversible loading, especially when integrated into a gel network. Herein, we present the fabrication of poly(dehydroalanine)-derived gels of different size scales and evaluate them with respect to their practical use in biomedicine. Already existing protocols for bulk gelation were remodeled to derive suitable reaction conditions for droplet-based microfluidic synthesis. Depending on the layout of the microfluidic chip, microgels with a size of approximately 30 µm or 200 µm were obtained, whose crosslinking density can be increased by implementing a multi-arm crosslinker. We analyzed the effects of the crosslinker species on composition, permeability, and softness and show that the microgels exhibit advantageous properties inherent to zwitterionic polymer systems, including high hydrophilicity as well as pH- and ionic strength-sensitivity. We demonstrate pH-regulated uptake and release of fluorescent model dyes before testing the adsorption of a small antimicrobial peptide, LL-37. Quantification of the peptide accommodated within the microgels reveals the impact of size and crosslinking density of the microgels. Biocompatibility of the microgels was validated by cell tests.
Asunto(s)
Microesferas , Concentración de Iones de Hidrógeno , Microgeles/química , Péptidos/química , Geles/química , Microfluídica , Humanos , Péptidos Catiónicos Antimicrobianos/químicaRESUMEN
Schwann cell (SC) transplantation represents a promising therapeutic approach for traumatic spinal cord injury but is frustrated by barrier formation, preventing cell migration, and axonal regeneration at the interface between grafted SCs and reactive resident astrocytes (ACs). Although regenerating axons successfully extend into SC grafts, only a few cross the SC-AC interface to re-enter lesioned neuropil. To date, research has focused on identifying and modifying the molecular mechanisms underlying such scarring cell-cell interactions, while the influence of substrate topography remains largely unexplored. Using a recently modified cell confrontation assay to model SC-AC barrier formation in vitro, highly oriented poly(ε-caprolactone) nanofibers were observed to reduce AC reactivity, induce extensive oriented intermingling between SCs and ACs, and ultimately enable substantial neurite outgrowth from the SC compartment into the AC territory. It is anticipated that these findings will have important implications for the future design of biomaterial-based scaffolds for nervous tissue repair.
Asunto(s)
Astrocitos , Neuritas , Humanos , Axones , Regeneración Nerviosa , Cicatriz/patología , Células de Schwann/patología , Células de Schwann/fisiología , Células de Schwann/trasplanteRESUMEN
Widespread use of plant protection agents in agriculture is a major cause of pollution. Apart from active ingredients, the environmental impact of auxiliary synthetic polymers should be minimized if they are highly persistent. An alternative to synthetic polymers is the use of natural polysaccharides, which are abundant and biodegradable. In this study, we explore pectin microgels functionalized with anchor peptides (P-MAPs) to be used as an alternative biobased pesticide delivery system. Using copper as the active ingredient, P-MAPs effectively prevented infection of grapevine plants with downy mildew under semi-field conditions on par with commercial copper pesticides. By using anchor peptides, the microgels tightly bind to the leaf surface, exhibiting excellent rain fastness and prolonged fungicidal activity. Finally, P-MAPs are shown to be easily degradable by enzymes found in nature, demonstrating their negligible long-term impact on the environment.
Asunto(s)
Microgeles , Péptidos , Plaguicidas , Microgeles/química , Péptidos/química , Péptidos/farmacología , Plaguicidas/química , Plaguicidas/farmacología , Vitis/química , Pectinas/química , Cobre/químicaRESUMEN
Hydrogels, as well as colloidal hydrogels (microgels), are important materials for a large variety of applications in the biomedical field. Microgels with a controlled pore size (meso- and macropores) are required for efficient nutrient support, modulation of cell adhesion, removal of metabolic products in cell cultures, and probiotic loading. Common microgel fabrication techniques do not provide sufficient control over pore sizes and geometry. In this work, the natural polysaccharide dextran modified with methacrylate groups is used to synthesize highly monodisperse meso- and macroporous microgels in a size range of 100-150 µm via photo cross-linking in microfluidic droplets. The size of mesopores is varied by the concentration of dextran methacrylate chains in the droplets (50-200 g L-1 ) and the size of macropores is regulated by the integration of pH-degradable supramacromolecular nanogels with diameters of 300 and 700 nm as sacrificial templates. Using permeability assays combined with confocal laser scanning microscopy, it is demonstrated that functional dextran-based microgels with uniform and defined pores could be obtained.
RESUMEN
Hydrogels as scaffolds in tissue engineering have gained increasing attention in recent years. Natural hydrogels, e.g., collagen or fibrin, are limited by their weak mechanical properties and fast degradation, whereas synthetic hydrogels face issues with biocompatibility and biodegradation. Therefore, combining natural and synthetic polymers to design hydrogels with tunable mechanical stability and cell affinity for biomedical applications is of interest. By using fibrin with its excellent cell compatibility and dextran with controllable mechanical properties, a novel bio-based hydrogel can be formed. Here, we synthesized fibrin and dextran-methacrylate (MA)-based hydrogels with tailorable mechanical properties, controllable degradation, variable pore sizes, and ability to support cell proliferation. The hydrogels are formed through in situ gelation of fibrinogen and dextran-MA with thrombin and dithiothreitol. Swelling and nuclear magnetic resonance diffusometry measurements showed that the water uptake and mesh sizes of fabricated hydrogels decrease with increasing dextran-MA concentrations. Cell viability tests confirm that these hydrogels exhibit no cytotoxic effect.
Asunto(s)
Fibrina , Hidrogeles , Hidrogeles/farmacología , Dextranos , Porosidad , Ingeniería de Tejidos , Andamios del TejidoRESUMEN
We report on triggering of p(NIPAM-AA) microgels' photo-responsiveness by making complexes with a spiropyran (SP) containing surfactant. Being dissolved in water, the SP surfactant in its merocyanine state bears three charges, while irradiation with UV and vis light leads to the partial or complete reversal of the SP state. The complexation of the photo-responsive amphiphile with swollen anionic microgels results in charge compensation within the gel interior and as a consequence its size reduces and the volume phase transition temperature (VPTT) decreases down to 32 °C. Under irradiation the MC form photo-isomerizes to a ring closed SP state generating a more hydrophobic surfactant with one positive charge at the head. The increase in the hydrophobicity of the surfactant and thus of the interior of the gel results in the reversible size change of the microgel. We investigate the photo-responsivity of the microgel as a function of wavelength and irradiation intensity, as well as of surfactant concentration and charge density of the microgel. We show that the change in the size and VPTT of the microgels during irradiation occurs through a combination of two processes: heating of the solution during light absorption by the surfactant (more pronounced in the case of UV irradiation) and the change in the hydrophobicity of the surfactant.
RESUMEN
Microgels are colloidal polymer networks with high molar mass and properties between rigid particles, flexible macromolecules, and micellar aggregates. Their unique stimuli-responsiveness in conjunction with their colloidal phase behavior render them useful for many applications ranging from engineering to biomedicine. In many scenarios either the microgel's mechanical properties or its interactions with mechanical force play an important role. Here, we firstly explain microgel mechanical properties and how these are measured by atomic force microscopy (AFM), then we equip the reader with the synthetic background to understand how specific architectures and chemical functionalities enable these mechanical properties, and eventually we elucidate how the interaction of force with microgels can lead to the activation of latent functionality. Since the interaction of microgels with force is a multiscale and multidisciplinary subject, we introduce and interconnect the different research areas that contribute to the understanding of this emerging field in this Tutorial Review.
Asunto(s)
Microgeles , Microscopía de Fuerza Atómica , Peso Molecular , Polímeros/químicaRESUMEN
In pH-responsive drug carriers, the distribution of charges has been proven to affect delivery efficiency but is difficult to control and verify. Herein, we fabricate polyampholyte nanogel-in-microgel colloids (NiM-C) and show that the arrangement of the nanogels (NG) can easily be manipulated by adapting synthesis conditions. Positively and negatively charged pH-responsive NG are synthesized by precipitation polymerization and labelled with different fluorescent dyes. The obtained NG are integrated into microgel (MG) networks by subsequent inverse emulsion polymerization in droplet-based microfluidics. By confocal laser scanning microscopy (CLSM), we verify that depending on NG concentration, pH value and ionic strength, NiM-C with different NG arrangements are obtained, including Janus-like phase-separation of NG, statistical distribution of NG, and core-shell arrangements. Our approach is a major step towards uptake and release of oppositely charged (drug) molecules.
RESUMEN
Mechanochemical approaches are widely used for the efficient, solvent-free synthesis of organic molecules, however their applicability to the synthesis of functional polymers has remained underexplored. Herein, we demonstrate for the first time that mechanochemically triggered free-radical polymerization allows solvent- and initiator-free syntheses of structurally and morphologically well-defined complex functional macromolecular architectures, namely stimuliresponsive microgels. The developed mechanochemical polymerization approach is applicable to a variety of monomers and allows synthesizing microgels with tunable chemical structure, variable size, controlled number of crosslinks and reactive functional end-groups.
RESUMEN
Here we show that microgels trapped at a solid wall can issue liquid flow and transport over distances several times larger than the particle size. The microgel consists of cross-linked poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAM-AA) polymer chains loaded with cationic azobenzene-containing surfactant, which can assume either a trans- or a cis-state depending on the wavelength of the applied irradiation. The microgel, being a selective absorber of trans-isomers, responds by changing its volume under irradiation with light of appropriate wavelength at which the cis-isomers of the surfactant molecules diffuse out of the particle interior. Together with the change in particle size, the expelled cis-isomers form an excess of the concentration and subsequent gradient in osmotic pressure generating a halo of local light-driven diffusioosmotic (l-LDDO) flow. The direction and the strength of the l-LDDO depends on the intensity and irradiation wavelength, as well as on the amount of surfactant absorbed by the microgel. The flow pattern around a microgel is directed radially outward and can be maintained quasi-indefinitely under exposure to blue light when the trans-/cis-ratio is 2/1, establishing a photostationary state. Irradiation with UV light, on the other hand, generates a radially transient flow pattern, which inverts from inward to outward over time at low intensities. By measuring the displacement of tracer particles around neutral microgels during a temperature-induced collapse, we can exclude that a change in particle shape itself causes the flow, i.e., just by expulsion or uptake of water. Ultimately, it is its ability to selectively absorb two isomers of photosensitive surfactant under different irradiation conditions that leads to an effective pumping caused by a self-induced diffusioosmotic flow.
RESUMEN
OBJECTIVES: Obligate and facultative anaerobic bacteria adhering to dental implants are a major cause for peri-implant inflammation, which, if left untreated, can lead to implant loss. Previously, our group developed a new route for the synthesis of isoeugenol-functionalized aqueous nanogels for implant coatings. METHODS: Here, the antimicrobial activity of several new nanogels differing in spacer length (n = 6, 9, 44), radius (60-200 nm), and amount of isoeugenol functional substance (1-20 mol%) was tested against the following peri-implantitis-associated species: Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella intermedia, Aggregatibacter actinomycetemcomitans, Escherichia coli, Actinomyces viscosus, Enterococcus faecalis, Staphylococcus aureus, Streptococcus oralis, S. parasanguinis, and the yeast Candida albicans. The minimal bactericidal concentration (MBC) and fungicidal concentration (MFC) were determined for each combination. In addition, transmission electron microscopy (TEM) and fluorescence microscopy after live-dead-staining (LD-S) were performed to visualize nanogel-microbe interactions. RESULTS: Two nanogels, NG9-3 and NG9-4 (colloids of 80-150 nm, with a spacer length of n = 9 and feeding between 5 and 10 mol% isoeugenol), had an inhibitory effect on all Gram-positive species and on P. gingivalis and P. intermedia with MBC ≥31.25 µg/ml. TEM and LD-S images showed that cellular adhesion and uptake of nanogels resulted in swelling, shedding, or even complete detachment of the cell wall and then to bursting (see graphical abstract). CONCLUSIONS: Functional nanogels can be used as building blocks in the design of bioactive coatings on implants to prevent infection and accelerate tissue regeneration, but the concentrations required are higher than for antibiotics.
Asunto(s)
Implantes Dentales , Periimplantitis , Aggregatibacter actinomycetemcomitans , Eugenol/análogos & derivados , Humanos , Nanogeles , Periimplantitis/prevención & control , Porphyromonas gingivalis , Prevotella intermediaRESUMEN
One catalyst, two reaction set-ups, three monomers and unlimited macromolecular microstructural designs: The iron guanidine complex [FeCl2 (TMG5NMe2 asme)] (1) polymerizes lactide faster than the industrially used Sn(Oct)2 and shows high activity towards glycolide and ϵ-caprolactone. Its distinguished features enable the synthesis of both block and random-like copolymers in the melt by a simple change of the polymerization set-up. Sequential addition of monomers yields highly ordered block copolymers including the symmetrical PLA-b-PGA-b-PCL-b-PGA-b-PLA pentablock copolymers, while polymerizations of monomer mixtures feature enhanced transesterifications and pave the way to di- and terpolymers with highly dispersed repeating unit distributions. A robust catalyst active under industrially applicable conditions and producing copolymers with desired microstructures is a major step towards biocompatible polymers with tailor-made properties as alternatives for traditional plastics on the way towards a sustainable, circular material flow.
RESUMEN
Cellulose nanocrystals (CNCs) are unique and promising natural nanomaterials that can be extracted from native cellulose fibers by acid hydrolysis. In this study, we developed chemically modified CNC derivatives by covalent tethering of PEGylated biotin and perylenediimide (PDI)-based near-infrared organic dye and evaluated their suitability for labeling and imaging of different cell lines including J774A.1 macrophages, NIH-3T3 fibroblasts, HeLa adenocarcinoma cells, and primary murine dendritic cells. PDI-labeled CNCs showed a superior photostability compared to similar commercially available dyes under long periods of constant and high-intensity illumination. All CNC derivatives displayed excellent cytocompatibility toward all cell types and efficiently labeled cells in a dose-dependent manner. Moreover, CNCs were effectively internalized and localized in the cytoplasm around perinuclear areas. Thus, our findings demonstrate the suitability of these new CNC derivatives for labeling, imaging, and long-time tracking of a variety of cell lines and primary cells.
Asunto(s)
Nanopartículas , Nanoestructuras , Animales , Celulosa , Células HeLa , Humanos , RatonesRESUMEN
Stimuli-responsive microgel copolymer networks with ionizable functional groups have important applications for encapsulation of drugs, peptides, enzymes, proteins, or cells. Rational design of such networks can be based on characterization of stimuli-induced volume phase transition and spatial distribution of neutral and charged monomer units in crosslinked polymer chains. In this work we successfully synthesized poly(N-vinylcaprolactam-co-1-vinyl-3-methylimidazolium) (poly(VCL-VIM+)) microgels carrying permanent positive charges and demonstrate that 1H high-resolution NMR spectroscopy in combination with transverse (T2) magnetization relaxometry allows investigating separately the behavior of each functional group in the microgel network. The information about comonomer transition temperatures, width of transition, and change in transition entropy were reported and correlated with the concentration of charged functional groups and resulting electrophoretic mobility. A two-state approach was used to describe the temperature-induced volume phase transition separately for neutral and charged polymer segments. The core-corona architecture specific to each functional group was detected revealing that the charged methylated vinylimidazolium groups (VIM+) are concentrated mainly in the corona of the microgel. These biocompatible PVCL-based microgels functionalized with permanent positive charges are shown to serve as an antibacterial system against Gram-negative E. coli strains, due to the positive charge of the incorporated VIM+ comonomer in the polymer network.
Asunto(s)
Microgeles , Escherichia coliRESUMEN
Amphiphilic diblock copolymers containing dopamine and zwitterions are synthesized via the RAFT polymerization method, which undergo temperature-mediated micellization in aqueous media. The presence of catechol moiety in dopamine is exploited to form pH-responsive cross-links with ferric ions (Fe3+ ) at different pH value. Herein, a comprehensive study of the effect of pH as well as temperature on the size and solution behavior of these cross-linked micelles is presented. These micelles cross-linked via metal-catechol coordination bonds can have several important biomedical applications such as degradable scaffolds for payload delivery.
Asunto(s)
Micelas , Polímeros , Polimerizacion , TemperaturaRESUMEN
Zwitterionic polymers by virtue of their unique chemical and physical attributes have attracted researchers in recent years. The simultaneous presence of positive and negative charges in the same repeat unit renders them of various interesting properties such as superhydrophilicity, which has significantly broadened their scope for being used in different applications. Among polyzwitterions of different architectures, micro- and/or nano-gels have started receiving attention only until recently. These 3D cross-linked colloidal structures show peculiar characteristics in context to their solution properties, which are attributable either to the comonomers present or the presence of different electrolytes and biological specimens. In this review, a concise yet detailed account is provided of the different synthetic techniques and application domains of zwitterion-based micro- and/or nanogels that have been explored in recent years. Here, the focus is kept solely on the "polybetaines," which have garnered maximum research interest and remain the extensively studied polyzwitterions in literature. While their vast application potential in the biomedical sector is being detailed here, some other areas of scope such as using them as microreactors for the synthesis of metal nanoparticles or making smart membranes for water-treatment are discussed in this minireview as well.