Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Gastroenterology ; 157(3): 760-776, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31063779

RESUMEN

BACKGROUND AND AIMS: Hepatocellular carcinomas (HCCs) are heterogeneous aggressive tumors with low rates of response to treatment at advanced stages. We screened a large panel of liver cancer cell lines (LCCLs) to identify agents that might be effective against HCC and markers of therapeutic response. METHODS: We performed whole-exome RNA and microRNA sequencing and quantification of 126 proteins in 34 LCCLs. We screened 31 anticancer agents for their ability to decrease cell viability. We compared genetic, RNA, and protein profiles of LCCLs with those of primary HCC samples and searched for markers of response. RESULTS: The protein, RNA and mutational signatures of the LCCLs were similar to those of the proliferation class of HCC, which is the most aggressive tumor type. Cell lines with alterations in genes encoding members of the Ras-MAPK signaling pathway and that required fibroblast growth factor (FGF)19 signaling via FGF receptor 4 for survival were more sensitive to trametinib than to FGF receptor 4 inhibitors. Amplification of FGF19 resulted in increased activity of FGF19 only in tumor cells that kept a gene expression pattern of hepatocyte differentiation. We identified single agents and combinations of agents that reduced viability of cells with features of the progenitor subclass of HCC. LCCLs with inactivating mutations in TSC1 and TSC2 were sensitive to the mammalian target of rapamycin inhibitor rapamycin, and cells with inactivating mutations in TP53 were sensitive to the Aurora kinase A inhibitor alisertib. Amplification of MET was associated with hypersensitivity to cabozantinib and the combination of sorafenib and inhibitors of MAP kinase 1 and MAP kinase2 had a synergistic antiproliferative effect. CONCLUSION: LCCLs can be screened for drugs and agents that might be effective for treatment of HCC. We identified genetic alterations and gene expression patterns associated with response to these agents. This information might be used to select patients for clinical trials.


Asunto(s)
Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Medicina de Precisión/métodos , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Toma de Decisiones Clínicas , Ensayos de Selección de Medicamentos Antitumorales , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Predisposición Genética a la Enfermedad , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Selección de Paciente , Fenotipo , Mapas de Interacción de Proteínas , Transducción de Señal , Transcriptoma
2.
Eur J Cancer ; 200: 113583, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38330765

RESUMEN

BACKGROUND: Hepatoblastoma is the most frequent pediatric liver cancer. The current treatments lead to 80% of survival rate at 5 years. In this study, we evaluated the clinical relevance of molecular features to identify patients at risk of chemoresistance, relapse and death of disease. METHODS: All the clinical data of 86 children with hepatoblastoma were retrospectively collected. Pathological slides were reviewed, tumor DNA sequencing (by whole exome, whole genome or target) and transcriptomic profiling with RNAseq or 300-genes panel were performed. Associations between the clinical, pathological, mutational and transcriptomic data were investigated. RESULTS: High-risk patients represented 44% of our series and the median age at diagnosis was 21.9 months (range: 0-208). Alterations of the WNT/ß-catenin pathway and of the 11p15.5 imprinted locus were identified in 98% and 74% of the tumors, respectively. Other cancer driver genes mutations were only found in less than 11% of tumors. After neoadjuvant chemotherapy, disease-specific survival and poor response to neoadjuvant chemotherapy were associated with 'Liver Progenitor' (p = 0.00049, p < 0.0001) and 'Immune Cold' (p = 0.0011, p < 0.0001) transcriptomic tumor subtypes, SBS35 cisplatin mutational signature (p = 0.018, p = 0.001), mutations in rare cancer driver genes (p = 0.0039, p = 0.0017) and embryonal predominant histological type (p = 0.0013, p = 0.0077), respectively. Integration of the clinical and molecular features revealed a cluster of molecular markers associated with resistance to chemotherapy and survival, enlightening transcriptomic 'Immune Cold' and Liver Progenitor' as a predictor of survival independent of the clinical features. CONCLUSIONS: Response to neoadjuvant chemotherapy and survival in children treated for hepatoblastoma are associated with genomic and pathological features independently of the clinical features.


Asunto(s)
Hepatoblastoma , Neoplasias Hepáticas , Niño , Humanos , Hepatoblastoma/genética , Hepatoblastoma/patología , Estudios Retrospectivos , Recurrencia Local de Neoplasia , Neoplasias Hepáticas/patología , Mutación , Perfilación de la Expresión Génica
3.
Nat Commun ; 14(1): 7122, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932266

RESUMEN

Pediatric liver tumors are very rare tumors with the most common diagnosis being hepatoblastoma. While hepatoblastomas are predominantly sporadic, around 15% of cases develop as part of predisposition syndromes such as Beckwith-Wiedemann (11p15.5 locus altered). Here, we identify mosaic genetic alterations of 11p15.5 locus in the liver of hepatoblastoma patients without a clinical diagnosis of Beckwith-Wiedemann syndrome. We do not retrieve these alterations in children with other types of pediatric liver tumors. We show that mosaic 11p15.5 alterations in liver FFPE sections of hepatoblastoma patients display IGF2 overexpression and H19 downregulation together with an alteration of the liver zonation. Moreover, mosaic livers' microenvironment is enriched in extracellular matrix and angiogenesis. Spatial transcriptomics and single-nucleus RNAseq analyses identify a 60-gene signature in 11p15.5 altered hepatocytes. These data provide insights for 11p15.5 mosaicism detection and its functional consequences during the early steps of carcinogenesis.


Asunto(s)
Síndrome de Beckwith-Wiedemann , Hepatoblastoma , Neoplasias Hepáticas , Humanos , Niño , Preescolar , Hepatoblastoma/genética , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Síndrome de Beckwith-Wiedemann/patología , Neoplasias Hepáticas/genética , Mosaicismo , Metilación de ADN , Impresión Genómica , Microambiente Tumoral
4.
Cancer Med ; 11(3): 602-617, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34951132

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) patient-derived xenograft (PDX) models hold potential to advance knowledge in HCC biology to help improve systemic therapies. Beside hepatitis B virus-associated tumors, HCC is poorly established in PDX. METHODS: PDX formation from fresh HCC biopsies were obtained and implanted intrahepatically or in subrenal capsule (SRC). Mouse liver injury was induced in immunodeficient Fah-/-  mice through cycling off nitisinone after HCC biopsy implantation, versus continuous nitisinone as non-liver injury controls. Mice with macroscopically detectable PDX showed rising human alpha1-antitrypsin (hAAT) serum levels, and conversely, no PDX was observed in mice with undetectable hAAT. RESULTS: Using rising hAAT as a marker for PDX formation, 20 PDX were established out of 45 HCC biopsy specimens (44%) reflecting the four major HCC etiologies most commonly identified at Memorial SloanKettering similar to many other institutions in the United States. PDX was established only in severely immunodeficient mice lacking lymphocytes and NK cells. Implantation under the renal capsule improved PDX formation two-fold compared to intrahepatic implantation. Two out of 18 biopsies required murine liver injury to establish PDX, one associated with hepatitis C virus and one with alcoholic liver disease. PDX tumors were histologically comparable to biopsy specimens and 75% of PDX lines could be passaged. CONCLUSIONS: Using cycling off nitisinone-induced liver injury, HCC biopsies implanted under the renal capsule of severely immunodeficient mice formed PDX with 57% efficiency as determined by rising hAAT levels. These findings facilitate a more efficient make-up of PDX for research into subset-specific HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Biopsia , Carcinoma Hepatocelular/patología , Modelos Animales de Enfermedad , Xenoinjertos , Humanos , Neoplasias Hepáticas/patología , Ratones , Estados Unidos , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Cancer Discov ; 11(10): 2524-2543, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33893148

RESUMEN

Pediatric liver cancers (PLC) comprise diverse diseases affecting infants, children, and adolescents. Despite overall good prognosis, PLCs display heterogeneous response to chemotherapy. Integrated genomic analysis of 126 pediatric liver tumors showed a continuum of driver mechanisms associated with patient age, including new targetable oncogenes. In 10% of patients with hepatoblastoma, all before three years old, we identified a mosaic premalignant clonal expansion of cells altered at the 11p15.5 locus. Analysis of spatial and longitudinal heterogeneity revealed an important plasticity between "hepatocytic," "liver progenitor," and "mesenchymal" molecular subgroups of hepatoblastoma. We showed that during chemotherapy, "liver progenitor" cells accumulated massive loads of cisplatin-induced mutations with a specific mutational signature, leading to the development of heavily mutated relapses and metastases. Drug screening in PLC cell lines identified promising targets for cisplatin-resistant progenitor cells, validated in mouse xenograft experiments. These data provide new insights into cisplatin resistance mechanisms in PLC and suggest alternative therapies. SIGNIFICANCE: PLCs are deadly when they resist chemotherapy, with limited alternative treatment options. Using a multiomics approach, we identified PLC driver genes and the cellular phenotype at the origin of cisplatin resistance. We validated new treatments targeting these molecular features in cell lines and xenografts.This article is highlighted in the In This Issue feature, p. 2355.


Asunto(s)
Antineoplásicos/uso terapéutico , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/genética , Neoplasias Hepáticas/tratamiento farmacológico , Adolescente , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Niño , Preescolar , Femenino , Perfilación de la Expresión Génica , Genómica , Hepatoblastoma/tratamiento farmacológico , Hepatoblastoma/genética , Humanos , Lactante , Neoplasias Hepáticas/genética , Masculino , Recurrencia Local de Neoplasia , Fenotipo
6.
Oncoimmunology ; 8(6): e1583547, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31069152

RESUMEN

Hepatoblastoma (HB) is the most common liver cancer in children. We aimed to characterize HB related to APC (Adenomatous Polyposis Coli) germline mutation (APC-HB). This French multicentric retrospective study included 12 APC-HB patients under 5 at diagnosis. Clinical features of APC-HB were compared to the French SIOPEL2-3 cohort of HB patients. Molecular and histopathological analyses of APC-HB were compared to 15 consecutive sporadic HB treated at Bicêtre hospital from 2013 to 2015 (non-APC-HB). APC-HB patients have a peculiar spectrum of germline APC mutations, with no events in the main hotspot of classical APC mutations at codon 1309 (P < .05). Compared to sporadic HB, they have similar clinical features including good prognosis since all patients are alive in complete remission at last follow-up. APC-HB are mostly well-limited tumors with fetal predominance and few mesenchymal components. All APC-HB have an activated Wnt/ß-catenin pathway without CTNNB1 mutation, confirming that germline APC and somatic CTNNB1 mutations are mutually exclusive (P < .001). Pathological reviewing identified massive intratumor tertiary lymphoid structures (TLS) containing both lymphocytes and antigen-presenting cells in all 11 APC-HB cases who received cisplatin-based neoadjuvant chemotherapy but not in five pre-chemotherapy samples (four paired biopsies and one patient resected without chemotherapy), indicating that these TLS are induced by chemotherapy (P < .001). Conclusion: APC-HB show a good prognosis, they are all infiltrated by cisplatin-induced TLS, a feature only retrieved in a minority of non-APC-HB. This suggests that APC inactivation can synergize with cisplatin to induce an immunogenic cell death that initiates an anti-tumor immune response.

7.
Viruses ; 10(4)2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29584637

RESUMEN

Single nucleotide changes were introduced into the non-structural (NS) coding sequence of the H-1 parvovirus (PV) infectious molecular clone and the corresponding virus stocks produced, thereby generating H1-PM-I, H1-PM-II, H1-PM-III, and H1-DM. The effects of the mutations on viral fitness were analyzed. Because of the overlapping sequences of NS1 and NS2, the mutations affected either NS2 (H1-PM-II, -III) or both NS1 and NS2 proteins (H1-PM-I, H1-DM). Our results show key benefits of PM-I, PM-II, and DM mutations with regard to the fitness of the virus stocks produced. Indeed, these mutants displayed a higher production of infectious virus in different cell cultures and better spreading capacity than the wild-type virus. This correlated with a decreased particle-to-infectivity (P/I) ratio and stimulation of an early step(s) of the viral cycle prior to viral DNA replication, namely, cell binding and internalization. These mutations also enhance the transduction efficiency of H-1PV-based vectors. In contrast, the PM-III mutation, which affects NS2 at a position downstream of the sequence deleted in Del H-1PV, impaired virus replication and spreading. We hypothesize that the NS2 protein-modified in H1-PM-I, H1-PM-II, and H1-DM-may result in the stimulation of some maturation step(s) of the capsid and facilitate virus entry into subsequently infected cells.


Asunto(s)
Vectores Genéticos/genética , Parvovirus H-1/fisiología , Sistemas de Lectura Abierta/genética , Infecciones por Parvoviridae/virología , Transducción Genética , Proteínas no Estructurales Virales/genética , Animales , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Línea Celular , ADN Viral/biosíntesis , ADN Viral/metabolismo , Parvovirus H-1/genética , Parvovirus H-1/crecimiento & desarrollo , Humanos , Mutación , Procesamiento Proteico-Postraduccional , Ratas , Proteínas Virales/metabolismo , Acoplamiento Viral , Internalización del Virus , Liberación del Virus , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA