Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Mol Cell ; 64(6): 1144-1153, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27939943

RESUMEN

The Spindle Assembly Checkpoint (SAC) ensures genomic stability by preventing sister chromatid separation until all chromosomes are attached to the spindle. It catalyzes the production of the Mitotic Checkpoint Complex (MCC), which inhibits Cdc20 to inactivate the Anaphase Promoting Complex/Cyclosome (APC/C). Here we show that two Cdc20-binding motifs in BubR1 of the recently identified ABBA motif class are crucial for the MCC to recognize active APC/C-Cdc20. Mutating these motifs eliminates MCC binding to the APC/C, thereby abolishing the SAC and preventing cells from arresting in response to microtubule poisons. These ABBA motifs flank a KEN box to form a cassette that is highly conserved through evolution, both in the arrangement and spacing of the ABBA-KEN-ABBA motifs, and association with the amino-terminal KEN box required to form the MCC. We propose that the ABBA-KEN-ABBA cassette holds the MCC onto the APC/C by binding the two Cdc20 molecules in the MCC-APC/C complex.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/genética , Proteínas Cdc20/genética , Puntos de Control de la Fase M del Ciclo Celular , Proteínas Serina-Treonina Quinasas/genética , Secuencias de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase/química , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Evolución Biológica , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas Cdc20/química , Proteínas Cdc20/metabolismo , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Secuencia Conservada , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Expresión Génica , Células HeLa , Humanos , Mutación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Imagen de Lapso de Tiempo
2.
Semin Cell Dev Biol ; 117: 86-98, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34210579

RESUMEN

The spindle assembly checkpoint (SAC) is a surveillance mechanism that promotes accurate chromosome segregation in mitosis. The checkpoint senses the attachment state of kinetochores, the proteinaceous structures that assemble onto chromosomes in mitosis in order to mediate their interaction with spindle microtubules. When unattached, kinetochores generate a diffusible inhibitor that blocks the activity of the anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase required for sister chromatid separation and exit from mitosis. Work from the past decade has greatly illuminated our understanding of the mechanisms by which the diffusible inhibitor is assembled and how it inhibits the APC/C. However, less is understood about how SAC proteins are recruited to kinetochores in the absence of microtubule attachment, how the kinetochore catalyzes formation of the diffusible inhibitor, and how attachments silence the SAC at the kinetochore. Here, we summarize current understanding of the mechanisms that activate and silence the SAC at kinetochores and highlight open questions for future investigation.


Asunto(s)
Cinetocoros/metabolismo , Huso Acromático/metabolismo , Humanos
3.
Nat Rev Mol Cell Biol ; 12(7): 427-38, 2011 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-21633387

RESUMEN

One does not often look to analytic cubism for insights into the control of the cell cycle, but Pablo Picasso beautifully encapsulated the fundamentals when he said that "every act of creation is, first of all, an act of destruction". The rapid destruction of specific cell cycle regulators at just the right moment in the cell cycle ensures that daughter cells receive an equal and identical set of chromosomes from their mother and that DNA replication always follows mitosis. Remarkably, one protein complex is responsible for this surgical precision, the APC/C (anaphase-promoting complex, also known as the cyclosome). The APC/C is tightly regulated by its co-activators and by the spindle assembly checkpoint.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Mitosis/fisiología , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Animales , Humanos , Modelos Biológicos , Huso Acromático/metabolismo
4.
Nature ; 517(7536): 631-4, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25383541

RESUMEN

The spindle assembly checkpoint (SAC) maintains genomic stability by delaying chromosome segregation until the last chromosome has attached to the mitotic spindle. The SAC prevents the anaphase promoting complex/cyclosome (APC/C) ubiquitin ligase from recognizing cyclin B and securin by catalysing the incorporation of the APC/C co-activator, CDC20, into a complex called the mitotic checkpoint complex (MCC). The SAC works through unattached kinetochores generating a diffusible 'wait anaphase' signal that inhibits the APC/C in the cytoplasm, but the nature of this signal remains a key unsolved problem. Moreover, the SAC and the APC/C are highly responsive to each other: the APC/C quickly targets cyclin B and securin once all the chromosomes attach in metaphase, but is rapidly inhibited should kinetochore attachment be perturbed. How this is achieved is also unknown. Here, we show that the MCC can inhibit a second CDC20 that has already bound and activated the APC/C. We show how the MCC inhibits active APC/C and that this is essential for the SAC. Moreover, this mechanism can prevent anaphase in the absence of kinetochore signalling. Thus, we propose that the diffusible 'wait anaphase' signal could be the MCC itself, and explain how reactivating the SAC can rapidly inhibit active APC/C.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/antagonistas & inhibidores , Proteínas Cdc20/metabolismo , Mitosis , Complejos Multiproteicos/metabolismo , Anafase , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Animales , Citoplasma/enzimología , Citoplasma/metabolismo , Células HeLa , Humanos , Puntos de Control de la Fase M del Ciclo Celular , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Huso Acromático/metabolismo , Especificidad por Sustrato
5.
Nature ; 517(7532): 94-98, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25487150

RESUMEN

The widespread reorganization of cellular architecture in mitosis is achieved through extensive protein phosphorylation, driven by the coordinated activation of a mitotic kinase network and repression of counteracting phosphatases. Phosphatase activity must subsequently be restored to promote mitotic exit. Although Cdc14 phosphatase drives this reversal in budding yeast, protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) activities have each been independently linked to mitotic exit control in other eukaryotes. Here we describe a mitotic phosphatase relay in which PP1 reactivation is required for the reactivation of both PP2A-B55 and PP2A-B56 to coordinate mitotic progression and exit in fission yeast. The staged recruitment of PP1 (the Dis2 isoform) to the regulatory subunits of the PP2A-B55 and PP2A-B56 (B55 also known as Pab1; B56 also known as Par1) holoenzymes sequentially activates each phosphatase. The pathway is blocked in early mitosis because the Cdk1-cyclin B kinase (Cdk1 also known as Cdc2) inhibits PP1 activity, but declining cyclin B levels later in mitosis permit PP1 to auto-reactivate. PP1 first reactivates PP2A-B55; this enables PP2A-B55 in turn to promote the reactivation of PP2A-B56 by dephosphorylating a PP1-docking site in PP2A-B56, thereby promoting the recruitment of PP1. PP1 recruitment to human, mitotic PP2A-B56 holoenzymes and the sequences of these conserved PP1-docking motifs suggest that PP1 regulates PP2A-B55 and PP2A-B56 activities in a variety of signalling contexts throughout eukaryotes.


Asunto(s)
Mitosis , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 2/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/enzimología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Proteína Quinasa CDC2/metabolismo , Segregación Cromosómica , Secuencia Conservada , Ciclina B/metabolismo , Activación Enzimática , Células HeLa , Holoenzimas/metabolismo , Humanos , Isoenzimas/metabolismo , Datos de Secuencia Molecular , Fosforilación , Proteína Fosfatasa 2/química , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Transducción de Señal
6.
Nat Rev Mol Cell Biol ; 13(8): 482, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22760120
7.
Mol Cell ; 43(3): 406-17, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21816347

RESUMEN

Cyclin-dependent kinases comprise the conserved machinery that drives progress through the cell cycle, but how they do this in mammalian cells is still unclear. To identify the mechanisms by which cyclin-cdks control the cell cycle, we performed a time-resolved analysis of the in vivo interactors of cyclins E1, A2, and B1 by quantitative mass spectrometry. This global analysis of context-dependent protein interactions reveals the temporal dynamics of cyclin function in which networks of cyclin-cdk interactions vary according to the type of cyclin and cell-cycle stage. Our results explain the temporal specificity of the cell-cycle machinery, thereby providing a biochemical mechanism for the genetic requirement for multiple cyclins in vivo and reveal how the actions of specific cyclins are coordinated to control the cell cycle. Furthermore, we identify key substrates (Wee1 and c15orf42/Sld3) that reveal how cyclin A is able to promote both DNA replication and mitosis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Ciclina A2/metabolismo , Ciclina B1/metabolismo , Quinasas Ciclina-Dependientes/fisiología , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/fisiología , Línea Celular , Ciclina A2/química , Ciclina A2/fisiología , Ciclina B1/química , Ciclina B1/fisiología , Ciclina E/química , Ciclina E/metabolismo , Ciclina E/fisiología , Quinasas Ciclina-Dependientes/química , Quinasas Ciclina-Dependientes/metabolismo , Replicación del ADN , Células HeLa , Humanos , Inmunoprecipitación , Espectrometría de Masas , Datos de Secuencia Molecular , Proteínas Oncogénicas/química , Proteínas Oncogénicas/metabolismo , Proteínas Oncogénicas/fisiología , Fosforilación , Proteómica/métodos , Alineación de Secuencia , Especificidad por Sustrato
8.
EMBO J ; 32(2): 303-14, 2013 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-23288039

RESUMEN

The Anaphase Promoting Complex/Cyclosome (APC/C) in complex with its co-activator Cdc20 is responsible for targeting proteins for ubiquitin-mediated degradation during mitosis. The activity of APC/C-Cdc20 is inhibited during prometaphase by the Spindle Assembly Checkpoint (SAC) yet certain substrates escape this inhibition. Nek2A degradation during prometaphase depends on direct binding of Nek2A to the APC/C via a C-terminal MR dipeptide but whether this motif alone is sufficient is not clear. Here, we identify Kif18A as a novel APC/C-Cdc20 substrate and show that Kif18A degradation depends on a C-terminal LR motif. However in contrast to Nek2A, Kif18A is not degraded until anaphase showing that additional mechanisms contribute to Nek2A degradation. We find that dimerization via the leucine zipper, in combination with the MR motif, is required for stable Nek2A binding to and ubiquitination by the APC/C. Nek2A and the mitotic checkpoint complex (MCC) have an overlap in APC/C subunit requirements for binding and we propose that Nek2A binds with high affinity to apo-APC/C and is degraded by the pool of Cdc20 that avoids inhibition by the SAC.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Cinesinas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Ciclosoma-Complejo Promotor de la Anafase , Subunidad Apc8 del Ciclosoma-Complejo Promotor de la Anafase , Proteínas Cdc20 , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Humanos , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Quinasas Relacionadas con NIMA , Prometafase/fisiología , Unión Proteica , Multimerización de Proteína , Factores de Tiempo , Células Tumorales Cultivadas , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
10.
J Cell Sci ; 127(Pt 6): 1346-56, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24424027

RESUMEN

The target of rapamycin (TOR) kinase regulates cell growth and division. Rapamycin only inhibits a subset of TOR activities. Here we show that in contrast to the mild impact of rapamycin on cell division, blocking the catalytic site of TOR with the Torin1 inhibitor completely arrests growth without cell death in Schizosaccharomyces pombe. A mutation of the Tor2 glycine residue (G2040D) that lies adjacent to the key Torin-interacting tryptophan provides Torin1 resistance, confirming the specificity of Torin1 for TOR. Using this mutation, we show that Torin1 advanced mitotic onset before inducing growth arrest. In contrast to TOR inhibition with rapamycin, regulation by either Wee1 or Cdc25 was sufficient for this Torin1-induced advanced mitosis. Torin1 promoted a Polo and Cdr2 kinase-controlled drop in Wee1 levels. Experiments in human cell lines recapitulated these yeast observations: mammalian TOR (mTOR) was inhibited by Torin1, Wee1 levels declined and mitotic commitment was advanced in HeLa cells. Thus, the regulation of the mitotic inhibitor Wee1 by TOR signalling is a conserved mechanism that helps to couple cell cycle and growth controls.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Mitosis/efectos de los fármacos , Naftiridinas/farmacología , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/crecimiento & desarrollo , Secuencia de Aminoácidos , Dominio Catalítico , Muerte Celular , Resistencia a Medicamentos , Puntos de Control de la Fase G1 del Ciclo Celular , Células HeLa , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Datos de Secuencia Molecular , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/metabolismo , Mutagénesis Sitio-Dirigida , Fosfatidilinositol 3-Quinasas/metabolismo , Transporte de Proteínas , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/enzimología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo
11.
Mol Cell ; 30(3): 290-302, 2008 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-18471975

RESUMEN

Successful mitosis requires the right protein be degraded at the right time. Central to this is the spindle checkpoint that prevents the destruction of securin and cyclin B1 when there are improperly attached chromosomes. The principal target of the checkpoint is Cdc20, which activates the anaphase-promoting complex/cyclosome (APC/C). A Drosophila Cdc20/fizzy mutant arrests in mitosis with high levels of cyclins A and B, but paradoxically the spindle checkpoint does not stabilize cyclin A. Here, we investigated this paradox and found that Cdc20 is rate limiting for cyclin A destruction. Indeed, Cdc20 binds efficiently to cyclin A before and in mitosis, and this complex has little associated Mad2. Furthermore, the cyclin A complex must bind to a Cks protein to be degraded independently of the checkpoint. Thus, we identify a crucial role for the Cks proteins in mitosis and one mechanism by which the APC/C can target substrates independently of the spindle checkpoint.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Ciclina A/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Huso Acromático/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Animales , Quinasas CDC2-CDC28 , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas Cdc20 , Proteínas de Ciclo Celular/genética , Línea Celular , Ciclina A/genética , Ciclina A2 , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasas Ciclina-Dependientes/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Mitosis/fisiología , Interferencia de ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
12.
J Cell Sci ; 125(Pt 13): 3085-90, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22454515

RESUMEN

The completion of cytokinesis requires abscission of the midbody, a microtubule-rich cytoplasmic bridge that connects the daughter cells before their final separation. Although it has been established that both the midbody structure and membrane fusion are essential for abscission, the biochemical machinery and the cellular processes of abscission remain ill-defined. Here we report that human Mob1A and Mob1B proteins are involved in the regulation of abscission of the intercellular bridge. The Mob family is a group of highly conserved proteins in eukaryotes, described as binding partners as well as co-activators of protein kinases of the Ndr family, and as members of the Hippo pathway. We show that depletion of Mob1A and Mob1B by RNAi causes abscission failure as a consequence of hyper-stabilization of microtubules in the midbody region. Interestingly, depleting Mob1 also increases cell motility after cytokinesis, and induces prolonged centriole separation in G1 phase. In contrast, centrosomes fail to split when either Mob1A or Mob1B is overexpressed. Our findings indicate that human Mob1 proteins are involved in the regulation of microtubule stability at the midbody. We conclude that Mob1A and Mob1B are needed for cell abscission and centriole re-joining after telophase and cytokinesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Citocinesis , Microtúbulos/fisiología , Acetilación , Proteínas Adaptadoras Transductoras de Señales/genética , Movimiento Celular , Polaridad Celular , Centrosoma/metabolismo , Centrosoma/fisiología , Células HeLa , Humanos , Microscopía Fluorescente , Microtúbulos/metabolismo , Estabilidad Proteica , Transporte de Proteínas , ARN Interferente Pequeño/genética , Telofase , Transfección
13.
Nature ; 451(7174): 81-5, 2008 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-18172500

RESUMEN

Post-translational modification (PTM) of proteins plays an important part in mediating protein interactions and/or the recruitment of specific protein targets. PTM can be mediated by the addition of functional groups (for example, acetylation or phosphorylation), peptides (for example, ubiquitylation or sumoylation), or nucleotides (for example, poly(ADP-ribosyl)ation). Poly(ADP-ribosyl)ation often involves the addition of long chains of ADP-ribose units, linked by glycosidic ribose-ribose bonds, and is critical for a wide range of processes, including DNA repair, regulation of chromosome structure, transcriptional regulation, mitosis and apoptosis. Here we identify a novel poly(ADP-ribose)-binding zinc finger (PBZ) motif in a number of eukaryotic proteins involved in the DNA damage response and checkpoint regulation. The PBZ motif is also required for post-translational poly(ADP-ribosyl)ation. We demonstrate interaction of poly(ADP-ribose) with this motif in two representative human proteins, APLF (aprataxin PNK-like factor) and CHFR (checkpoint protein with FHA and RING domains), and show that the actions of CHFR in the antephase checkpoint are abrogated by mutations in PBZ or by inhibition of poly(ADP-ribose) synthesis.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Reparación del ADN , Poli Adenosina Difosfato Ribosa/metabolismo , Dedos de Zinc/fisiología , Secuencia de Aminoácidos , Línea Celular , Daño del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Humanos , Datos de Secuencia Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Poli Adenosina Difosfato Ribosa/biosíntesis , Proteínas de Unión a Poli-ADP-Ribosa , Unión Proteica , Procesamiento Proteico-Postraduccional , Ubiquitina-Proteína Ligasas , Ubiquitinación
14.
Dev Cell ; 12(4): 475-7, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17419985

RESUMEN

During mitosis, the interaction between chromosomes and microtubules requires nuclear envelope disassembly in prophase. Two articles in this issue of Developmental Cell show that centrosomes have a role in promoting nuclear envelope breakdown (Hachet et al., 2007; Portier et al., 2007). Surprisingly, the role of the centrosome in this process is independent of its role as a microtubule nucleation organelle. Instead, the centrosome seems to act as a spatial regulator for the activation of the Aurora A kinase.


Asunto(s)
Centrosoma/metabolismo , Mitosis , Membrana Nuclear/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Aurora Quinasas , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Cromosomas/genética , Microtúbulos/genética , Microtúbulos/fisiología , Membrana Nuclear/fisiología , Huso Acromático
15.
Nat Cell Biol ; 7(8): 731-5, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16056263

RESUMEN

Proteolysis via the ubiquitin-proteasome system (UPS) is a rapid and effective method of degrading a specific protein at a specific time, and in many cases a protein is degraded only in response to a particular cellular signal or event. However, an added dimension to the control of protein degradation is possible because the ubiquitin system can be spatially regulated. Controlling where a protein is degraded can enhance the specificity and timing of proteolysis, generate asymmetry and maintain sub-compartments even in the mitotic cell. Here, we discuss this aspect of the UPS.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Animales , Compartimento Celular , Ciclo Celular/fisiología , Núcleo Celular/metabolismo , Extensiones de la Superficie Celular/metabolismo , Estructuras Celulares/metabolismo , Humanos , Orgánulos/metabolismo , Transporte de Proteínas/fisiología , Transducción de Señal/fisiología , Ubiquitina/metabolismo
16.
J Cell Biol ; 177(3): 425-37, 2007 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-17485488

RESUMEN

Ubiquitin-mediated proteolysis is critical for the alternation between DNA replication and mitosis and for the key regulatory events in mitosis. The anaphase-promoting complex/cyclosome (APC/C) is a conserved ubiquitin ligase that has a fundamental role in regulating mitosis and the cell cycle in all eukaryotes. In vertebrate cells, early mitotic inhibitor 1 (Emi1) has been proposed as an important APC/C inhibitor whose destruction may trigger activation of the APC/C at mitosis. However, in this study, we show that the degradation of Emi1 is not required to activate the APC/C in mitosis. Instead, we uncover a key role for Emi1 in inhibiting the APC/C in interphase to stabilize the mitotic cyclins and geminin to promote mitosis and prevent rereplication. Thus, Emi1 plays a crucial role in the cell cycle to couple DNA replication with mitosis, and our results also question the current view that the APC/C has to be inactivated to allow DNA replication.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Replicación del ADN/fisiología , Proteínas F-Box/metabolismo , Interfase/fisiología , Mitosis/fisiología , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Ciclinas/metabolismo , Geminina , Células HeLa , Humanos
17.
Open Biol ; 12(6): 220057, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35765818

RESUMEN

Measuring the dynamics with which the regulatory complexes assemble and disassemble is a crucial barrier to our understanding of how the cell cycle is controlled that until now has been difficult to address. This considerable gap in our understanding is due to the difficulty of reconciling biochemical assays with single cell-based techniques, but recent advances in microscopy and gene editing techniques now enable the measurement of the kinetics of protein-protein interaction in living cells. Here, we apply fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy to study the dynamics of the cell cycle machinery, beginning with Cyclin B1 and its binding to its partner kinase Cdk1 that together form the major mitotic kinase. Although Cyclin B1 and Cdk1 are known to bind with high affinity, our results reveal that in living cells there is a pool of Cyclin B1 that is not bound to Cdk1. Furthermore, we provide evidence that the affinity of Cyclin B1 for Cdk1 increases during the cell cycle, indicating that the assembly of the complex is a regulated step. Our work lays the groundwork for studying the kinetics of protein complex assembly and disassembly during the cell cycle in living cells.


Asunto(s)
Edición Génica , Ciclo Celular , División Celular , Ciclina B1 , Análisis Espectral
18.
Curr Biol ; 18(21): 1649-58, 2008 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-18976910

RESUMEN

BACKGROUND: Control of mitotic cell cycles by the anaphase-promoting complex or cyclosome (APC/C) ubiquitin ligase depends on its coactivators Cdc20 and Cdh1. APC/C(Cdc20) is active during mitosis and promotes anaphase onset by targeting mitotic cyclins and securin. APC/C(Cdh1) becomes active during mitotic exit and has essential targets in G1 phase. It is not known whether targeting of substrates by APC/C(Cdh1) plays any role in the final stages of mitosis. Here, we have investigated the role of APC/C(Cdh1) at this time in the cell cycle by using siRNA-mediated depletion of Cdh1 in human cells. RESULTS: In contrast to the current view that Cdh1 takes over from Cdc20 at anaphase, we show that reduced Cdh1 levels have no effect on destruction of many APC/C substrates during mitotic exit but strongly and specifically stabilize Aurora kinases. We find that APC/C(Cdh1) is required for assembly of a robust spindle midzone at anaphase and for normal timings of spindle elongation and cytokinesis. The effect of Cdh1 siRNA on anaphase spindle dynamics requires Aurora A, and its effect can be mimicked by nondegradable Aurora kinase. CONCLUSIONS: Targeting of Aurora kinases at anaphase by APC/C(Cdh1) participates in the control of mitotic exit and cytokinesis.


Asunto(s)
Anafase , Cadherinas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Huso Acromático/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Antígenos CD , Aurora Quinasas , Proteínas Cdc20 , Proteínas de Ciclo Celular/metabolismo , Citocinesis , Silenciador del Gen , Células HeLa , Humanos , ARN Interferente Pequeño/metabolismo , Factores de Tiempo
19.
Trends Cell Biol ; 16(1): 55-63, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16337124

RESUMEN

There are two major problems for the cell to solve in mitosis: how to ensure that each daughter cell receives an equal and identical complement of the genome, and how to prevent cell separation before chromosome segregation. Both these problems are solved by controlling when two specific proteins are destroyed: securin, an inhibitor of chromosome segregation, and cyclin B, which inhibits cell separation (cytokinesis). It has recently become clear that several other proteins are degraded at specific points in mitosis. This review (which is part of the Chromosome Segregation and Aneuploidy series) focuses on how specific proteins are selected for proteolysis at defined points in mitosis and how this contributes to the proper coordination of chromosome segregation and cytokinesis.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Segregación Cromosómica/fisiología , Citocinesis/fisiología , Mitosis/fisiología , Ciclosoma-Complejo Promotor de la Anafase , Animales , Ciclina B/fisiología , Regulación de la Expresión Génica , Genes cdc/fisiología , Humanos , Péptido Hidrolasas/fisiología , Factores de Tiempo , Ubiquitina/fisiología , Complejos de Ubiquitina-Proteína Ligasa/fisiología
20.
Nat Cell Biol ; 6(9): 892-8, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15322556

RESUMEN

The anaphase promoting complex/cyclosome (APC/C) is crucial to the control of cell division (for a review, see ref. 1). It is a multi-subunit ubiquitin ligase that, at defined points during mitosis, targets specific proteins for proteasomal degradation. The APC/C is itself regulated by the spindle or kinetochore checkpoint, which has an important role in maintaining genomic stability by preventing sister chromatid separation until all chromosomes are correctly aligned on the mitotic spindle. The spindle checkpoint regulates the APC/C by inactivating Cdc20, an important co-activator of the APC/C. There is also evidence to indicate that the spindle checkpoint components and Cdc20 are spatially regulated by the mitotic apparatus, in particular they are recruited to improperly attached kinetochores. Here, we show that the APC/C itself co-localizes with components of the spindle checkpoint to improperly attached kinetochores. Indeed, we provide evidence that the spindle checkpoint machinery is required to recruit the APC/C to kinetochores. Our data indicate that the APC/C could be regulated directly by the spindle checkpoint.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Centrómero/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , División Celular , Células HeLa , Humanos , Cinetocoros/metabolismo , Unión Proteica , Transporte de Proteínas , Huso Acromático , Transfección , Complejos de Ubiquitina-Proteína Ligasa/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA