Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(9): e2311883121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38386705

RESUMEN

Heart muscle has the unique property that it can never rest; all cardiomyocytes contract with each heartbeat which requires a complex control mechanism to regulate cardiac output to physiological requirements. Changes in calcium concentration regulate the thin filament activation. A separate but linked mechanism regulates the thick filament activation, which frees sufficient myosin heads to bind the thin filament, thereby producing the required force. Thick filaments contain additional nonmyosin proteins, myosin-binding protein C and titin, the latter being the protein that transmits applied tension to the thick filament. How these three proteins interact to control thick filament activation is poorly understood. Here, we show using 3-D image reconstruction of frozen-hydrated human cardiac muscle myofibrils lacking exogenous drugs that the thick filament is structured to provide three levels of myosin activation corresponding to the three crowns of myosin heads in each 429Å repeat. In one crown, the myosin heads are almost completely activated and disordered. In another crown, many myosin heads are inactive, ordered into a structure called the interacting heads motif. At the third crown, the myosin heads are ordered into the interacting heads motif, but the stability of that motif is affected by myosin-binding protein C. We think that this hierarchy of control explains many of the effects of length-dependent activation as well as stretch activation in cardiac muscle control.


Asunto(s)
Bencilaminas , Miocardio , Sarcómeros , Uracilo/análogos & derivados , Humanos , Miofibrillas , Miocitos Cardíacos , Miosinas
2.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33753506

RESUMEN

Every heartbeat relies on cyclical interactions between myosin thick and actin thin filaments orchestrated by rising and falling Ca2+ levels. Thin filaments are comprised of two actin strands, each harboring equally separated troponin complexes, which bind Ca2+ to move tropomyosin cables away from the myosin binding sites and, thus, activate systolic contraction. Recently, structures of thin filaments obtained at low (pCa ∼9) or high (pCa ∼3) Ca2+ levels revealed the transition between the Ca2+-free and Ca2+-bound states. However, in working cardiac muscle, Ca2+ levels fluctuate at intermediate values between pCa ∼6 and pCa ∼7. The structure of the thin filament at physiological Ca2+ levels is unknown. We used cryoelectron microscopy and statistical analysis to reveal the structure of the cardiac thin filament at systolic pCa = 5.8. We show that the two strands of the thin filament consist of a mixture of regulatory units, which are composed of Ca2+-free, Ca2+-bound, or mixed (e.g., Ca2+ free on one side and Ca2+ bound on the other side) troponin complexes. We traced troponin complex conformations along and across individual thin filaments to directly determine the structural composition of the cardiac native thin filament at systolic Ca2+ levels. We demonstrate that the two thin filament strands are activated stochastically with short-range cooperativity evident only on one of the two strands. Our findings suggest a mechanism by which cardiac muscle is regulated by narrow range Ca2+ fluctuations.


Asunto(s)
Citoesqueleto de Actina/química , Actinas/química , Calcio/metabolismo , Miocardio/química , Miosinas/química , Sístole , Troponina/química , Animales , Calcio/análisis , Microscopía por Crioelectrón , Conformación Proteica , Porcinos
3.
Biochemistry ; 62(14): 2137-2146, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37379571

RESUMEN

The disordered and basic C-terminal 14 residues of human troponin T (TnT) are essential for full inhibition of actomyosin ATPase activity at low Ca2+ levels and for limiting activation at saturating Ca2+. In previous studies, stepwise truncation of the C-terminal region of TnT increased activity in proportion to the number of positive charges eliminated. To define key basic residues more closely, we generated phosphomimetic-like mutants of TnT. Phosphomimetic mutants were chosen because of reports that phosphorylation of TnT, including sites within the C terminal region, depressed activity, contrary to our expectations. Four constructs were made where one or more Ser and Thr residues were replaced with Asp residues. The S275D and T277D mutants, near the IT helix and adjacent to basic residues, produced the greatest activation of ATPase rates in solution; the effects of the S275D mutant were recapitulated in muscle fiber preparations with enhanced myofilament Ca2+ sensitivity. Actin filaments containing S275D TnT were also shown to be incapable of populating the inactive state at low Ca2+ levels. Actin filaments containing both S275D/T284D were not statistically different from those containing only S275D in both solution and cardiac muscle preparation studies. Finally, actin filaments containing T284D TnT, closer to the C-terminus and not adjacent to a basic residue, had the smallest effect on activity. Thus, the effects of negative charge placement in the C-terminal region of TnT were greatest near the IT helix and adjacent to a basic residue.


Asunto(s)
Actinas , Troponina T , Humanos , Troponina T/genética , Troponina T/química , Actinas/química , Citoesqueleto de Actina , Miosinas/genética , Adenosina Trifosfatasas , Calcio/química , Tropomiosina/química
4.
Soft Matter ; 19(20): 3652-3660, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37165665

RESUMEN

We investigate the local fluctuations of filamentous actin (F-actin), with a focus on the skeletal thin filament, using single-particle optical trapping interferometry. This experimental technique allows us to detect the Brownian motion of a tracer bead immersed in a complex fluid with nanometric resolution at the microsecond time-scale. The mean square displacement, loss modulus, and velocity autocorrelation function (VAF) of the trapped microprobes in the fluid follow power-law behaviors, whose exponents can be determined in the short-time/high-frequency regime over several decades. We obtain 7/8 subdiffusive power-law exponents for polystyrene depleted microtracers at low optical trapping forces. Microrheologically, the elastic modulus of these suspensions is observed to be constant up to the limit of high frequencies, confirming that the origin of this subdiffusive exponent is the local longitudinal fluctuations of the polymers. Deviations from this value are measured and discussed in relation to the characteristic length scales of these F-actin networks and probes' properties, and also in connection with the different power-law exponents detected in the VAFs. Finally, we observed that the thin filament, composed of tropomyosin (Tm) and troponin (Tn) coupled to F-actin in the presence of Ca2+, shows exponent values less dispersed than that of F-actin alone, which we interpret as a micro-measurement of the filament stabilization.

5.
Biophys J ; 121(4): 565-574, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35032456

RESUMEN

Myocyte disarray is a hallmark of many cardiac disorders. However, the relationship between alterations in the orientation of individual myofibrils and myofilaments to disease progression has been largely underexplored. This oversight has predominantly been because of a paucity of methods for objective and quantitative analysis. Here, we introduce a novel, less-biased approach to quantify myofibrillar and myofilament orientation in cardiac muscle under near-physiological conditions and demonstrate its superiority as compared with conventional histological assessments. Using small-angle x-ray diffraction, we first investigated changes in myofibrillar orientation at increasing sarcomere lengths in permeabilized, relaxed, wild-type mouse myocardium from the left ventricle by assessing the angular spread of the 1,0 equatorial reflection (angle σ). At a sarcomere length of 1.9 µm, the angle σ was 0.23 ± 0.01 rad, decreased to 0.19 ± 0.01 rad at a sarcomere length of 2.1 µm, and further decreased to 0.15 ± 0.01 rad at a sarcomere length of 2.3 µm (p < 0.0001). Angle σ was significantly larger in R403Q, a MYH7 hypertrophic cardiomyopathy model, porcine myocardium (0.24 ± 0.01 rad) compared with wild-type myocardium (0.14 ± 0.005 rad; p < 0.0001), as well as in human heart failure tissue (0.19 ± 0.006 rad) when compared with nonfailing samples (0.17 ± 0.007 rad; p = 0.01). These data indicate that diseased myocardium suffers from greater myofibrillar disorientation compared with healthy controls. Finally, we showed that conventional, histology-based analysis of disarray can be subject to user bias and/or sampling error and lead to false positives. Our method for directly assessing myofibrillar orientation avoids the artifacts introduced by conventional histological approaches that assess myocyte orientation and only indirectly evaluate myofibrillar orientation, and provides a precise and objective metric for phenotypically characterizing myocardium. The ability to obtain excellent x-ray diffraction patterns from frozen human myocardium provides a new tool for investigating structural anomalies associated with cardiac diseases.


Asunto(s)
Cardiomiopatía Hipertrófica , Miofibrillas , Animales , Ventrículos Cardíacos/patología , Ratones , Contracción Miocárdica , Miocardio/patología , Sarcómeros , Porcinos
6.
Arch Biochem Biophys ; 726: 109301, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35661778

RESUMEN

After the discovery of troponin by Ebashi almost sixty years ago the field of striated muscle regulation has made significant progress. In the 1970's the nascent troponin field gained momentum, including contributions by James D. Potter who established the stoichiometry of contractile proteins in the myofibril (Arch Biochem Biophys. 1974 Jun; 162(2):436-41. https://doi.org/10.1016/0003-9861(7490202-1)). This opened the door to refinement of competing models that described possible thick filament configurations. This study suggested the presence of one myosin per cross bridge and provided accurate calculations of the molar ratios of each protein - myosin: actin: tropomyosin: troponin T: troponin I: troponin C.


Asunto(s)
Miofibrillas , Tropomiosina , Actinas/metabolismo , Animales , Calcio/metabolismo , Músculo Esquelético/metabolismo , Miofibrillas/metabolismo , Miosinas/metabolismo , Conejos , Tropomiosina/metabolismo , Troponina C/metabolismo
7.
J Mol Cell Cardiol ; 150: 77-90, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33148509

RESUMEN

BACKGROUND: The clinical outcome of hypertrophic cardiomyopathy patients is not only determined by the disease-causing mutation but influenced by a variety of disease modifiers. Here, we defined the role of the mutation location and the mutant protein dose of the troponin T mutations I79N, R94C and R278C. METHODS AND RESULTS: We determined myofilament function after troponin exchange in permeabilized single human cardiomyocytes as well as in cardiac patient samples harboring the R278C mutation. Notably, we found that a small dose of mutant protein is sufficient for the maximal effect on myofilament Ca2+-sensitivity for the I79N and R94C mutation while the mutation location determines the magnitude of this effect. While incorporation of I79N and R94C increased myofilament Ca2+-sensitivity, incorporation of R278C increased Ca2+-sensitivity at low and intermediate dose, while it decreased Ca2+-sensitivity at high dose. All three cTnT mutants showed reduced thin filament binding affinity, which coincided with a relatively low maximal exchange (50.5 ± 5.2%) of mutant troponin complex in cardiomyocytes. In accordance, 32.2 ± 4.0% mutant R278C was found in two patient samples which showed 50.0 ± 3.7% mutant mRNA. In accordance with studies that showed clinical variability in patients with the exact same mutation, we observed variability on the functional single cell level in patients with the R278C mutation. These differences in myofilament properties could not be explained by differences in the amount of mutant protein. CONCLUSIONS: Using troponin exchange in single human cardiomyocytes, we show that TNNT2 mutation-induced changes in myofilament Ca2+-sensitivity depend on mutation location, while all mutants show reduced thin filament binding affinity. The specific mutation-effect observed for R278C could not be translated to myofilament function of cardiomyocytes from patients, and is most likely explained by other (post)-translational troponin modifications. Overall, our studies illustrate that mutation location underlies variability in myofilament Ca2+-sensitivity, while only the R278C mutation shows a highly dose-dependent effect on myofilament function.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/patología , Mutación/genética , Miocitos Cardíacos/patología , Miofibrillas/patología , Troponina T/genética , Adolescente , Adulto , Anciano , Calcio/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas Mutantes/metabolismo , Miocitos Cardíacos/metabolismo , Miofibrillas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
8.
J Biol Chem ; 295(47): 15913-15922, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-32900850

RESUMEN

Vertebrate striated muscle thin filaments are thought to be thermodynamically activated in response to an increase in Ca2+ concentration. We tested this hypothesis by measuring time intervals for gliding runs and pauses of individual skeletal muscle thin filaments in cycling myosin motility assays. A classic thermodynamic mechanism predicts that if chemical potential is constant, transitions between runs and pauses of gliding thin filaments will occur at constant rate as given by a Poisson distribution. In this scenario, rate is given by the odds of a pause, and hence, run times between pauses fit an exponential distribution that slopes negatively for all observable run times. However, we determined that relative density of observed run times fits an exponential only at low Ca2+ levels that activate filament gliding. Further titration with Ca2+, or adding excess regulatory proteins tropomyosin and troponin, shifted the relative density of short run times to fit the positive slope of a gamma distribution, which derives from waiting times between Poisson events. Events that arise during a run and prevent the chance of ending a run for a random interval of time account for the observed run time distributions, suggesting that the events originate with cycling myosin. We propose that regulatory proteins of the thin filament require the mechanical force of cycling myosin to achieve the transition state for activation. During activation, combinations of cycling myosin that contribute insufficient activation energy delay deactivation.


Asunto(s)
Citoesqueleto de Actina/química , Calcio/química , Contracción Muscular , Miosinas/química , Sarcómeros/química , Citoesqueleto de Actina/metabolismo , Animales , Calcio/metabolismo , Miosinas/metabolismo , Conejos , Sarcómeros/metabolismo
9.
Am J Physiol Heart Circ Physiol ; 321(1): H1-H14, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33989084

RESUMEN

We tested the hypothesis that adiponectin deficiency attenuates cardiac and coronary microvascular function and prevents exercise training-induced adaptations of the myocardium and the coronary microvasculature in adult mice. Adult wild-type (WT) or adiponectin knockout (adiponectin KO) mice underwent treadmill exercise training or remained sedentary for 8-10 wk. Systolic and diastolic functions were assessed before and after exercise training or cage confinement. Vasoreactivity of coronary resistance arteries was assessed at the end of exercise training or cage confinement. Before exercise training, ejection fraction and fractional shortening were similar in adiponectin KO and WT mice, but isovolumic contraction time was significantly lengthened in adiponectin KO mice. Exercise training increased ejection fraction (12%) and fractional shortening (20%) with no change in isovolumic contraction time in WT mice. In adiponectin KO mice, both ejection fraction (-9%) and fractional shortening (-12%) were reduced after exercise training and these decreases were coupled to a further increase in isovolumic contraction time (20%). In sedentary mice, endothelium-dependent dilation to flow was higher in arterioles from adiponectin KO mice as compared with WT mice. Exercise training enhanced dilation to flow in WT mice but decreased flow-induced dilation in adiponectin KO mice. These data suggest that compensatory mechanisms contribute to the maintenance of cardiac and coronary microvascular function in sedentary mice lacking adiponectin; however, in the absence of adiponectin, cardiac and coronary microvascular adaptations to exercise training are compromised.NEW & NOTEWORTHY We report that compensatory mechanisms contribute to the maintenance of cardiac and coronary microvascular function in sedentary mice in which adiponectin has been deleted; however, when mice lacking adiponectin are subjected to the physiological stress of exercise training, beneficial coronary microvascular and cardiac adaptations are compromised or absent.


Asunto(s)
Adiponectina/genética , Corazón/fisiología , Condicionamiento Físico Animal/fisiología , Vasodilatación/fisiología , Adiponectina/metabolismo , Animales , Endotelio Vascular/fisiopatología , Masculino , Ratones , Ratones Noqueados , Microvasos/fisiología , Miocardio/metabolismo
10.
J Muscle Res Cell Motil ; 42(2): 323-342, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33179204

RESUMEN

Familial cardiomyopathy is an inherited disease that affects the structure and function of heart muscle and has an extreme range of phenotypes. Among the millions of affected individuals, patients with hypertrophic (HCM), dilated (DCM), or left ventricular non-compaction (LVNC) cardiomyopathy can experience morphologic changes of the heart which lead to sudden death in the most detrimental cases. TNNC1, the gene that codes for cardiac troponin C (cTnC), is a sarcomere gene associated with cardiomyopathies in which probands exhibit young age of presentation and high death, transplant or ventricular fibrillation events relative to TNNT2 and TNNI3 probands. Using GnomAD, ClinVar, UniProt and PhosphoSitePlus databases and published literature, an extensive list to date of identified genetic variants in TNNC1 and post-translational modifications (PTMs) in cTnC was compiled. Additionally, a recent cryo-EM structure of the cardiac thin filament regulatory unit was used to localize each functionally studied amino acid variant and each PTM (acetylation, glycation, s-nitrosylation, phosphorylation) in the structure of cTnC. TNNC1 has a large number of variants (> 100) relative to other genes of the same transcript size. Surprisingly, the mapped variant amino acids and PTMs are distributed throughout the cTnC structure. While many cardiomyopathy-associated variants are localized in α-helical regions of cTnC, this was not statistically significant χ2 (p = 0.72). Exploring the variants in TNNC1 and PTMs of cTnC in the contexts of cardiomyopathy association, physiological modulation and potential non-canonical roles provides insights into the normal function of cTnC along with the many facets of TNNC1 as a cardiomyopathic gene.


Asunto(s)
Miocardio , Troponina C , Humanos , Miocardio/metabolismo , Procesamiento Proteico-Postraduccional/genética , Troponina C/genética , Troponina C/metabolismo , Troponina I , Troponina T/genética
11.
J Muscle Res Cell Motil ; 42(2): 399-417, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34255253

RESUMEN

Ants use their mandibles for a variety of functions and behaviors. We investigated mandibular muscle structure and function from major workers of the Florida carpenter ant Camponotus floridanus: force-pCa relation and velocity of unloaded shortening of single, permeabilized fibres, primary sequences of troponin subunits (TnC, TnI and TnT) from a mandibular muscle cDNA library, and muscle fibre ultrastructure. From the mechanical measurements, we found Ca2+-sensitivity of isometric force was markedly shifted rightward compared with vertebrate striated muscle. From the troponin sequence results, we identified features that could explain the rightward shift of Ca2+-activation: the N-helix of TnC is effectively absent and three of the four EF-hands of TnC (sites I, II and III) do not adhere to canonical sequence rules for divalent cation binding; two alternatively spliced isoforms of TnI were identified with the alternatively spliced exon occurring in the region of the IT-arm α-helical coiled-coil, and the N-terminal extension of TnI may be involved in modulation of regulation, as in mammalian cardiac muscle; and TnT has a Glu-rich C-terminus. In addition, a structural homology model was built of C. floridanus troponin on the thin filament. From analysis of electron micrographs, we found thick filaments are almost as long as the 6.8 µm sarcomeres, have diameter of ~ 16 nm, and typical center-to-center spacing of ~ 46 nm. These results have implications for the mechanisms by which mandibular muscle fibres perform such a variety of functions, and how the structure of the troponin complex aids in these tasks.


Asunto(s)
Hormigas , Troponina C , Animales , Hormigas/metabolismo , Calcio/metabolismo , Humanos , Invertebrados/metabolismo , Mandíbula/metabolismo , Músculo Esquelético/metabolismo , Troponina C/genética , Troponina C/metabolismo , Troponina T/genética , Troponina T/metabolismo
12.
J Mol Cell Cardiol ; 142: 118-125, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32278834

RESUMEN

INTRODUCTION: Troponin (TNN)-encoded cardiac troponins (Tn) are critical for sensing calcium and triggering myofilament contraction. TNN variants are associated with development of cardiomyopathy; however, recent advances in genetic analysis have identified rare population variants. It is unclear how certain variants are associated with disease while others are tolerated. OBJECTIVE: To compare probands with TNNT2, TNNI3, and TNNC1 variants and utilize high-resolution variant comparison mapping of pathologic and rare population variants to identify loci associated with disease pathogenesis. METHODS: Cardiomyopathy-associated TNN variants were identified in the literature and topology mapping conducted. Clinical features were compiled and compared. Rare population variants were obtained from the gnomAD database. Signal-to-noise (S:N) normalized pathologic variant frequency against population variant frequency. Abstract review of clinical phenotypes was applied to "significant" hot spots. RESULTS: Probands were compiled (N = 70 studies, 224 probands) as were rare variants (N = 125,748 exomes; 15,708 genomes, MAF <0.001). TNNC1-positive probands demonstrated the youngest age of presentation (20.0 years; P = .016 vs TNNT2; P = .004 vs TNNI3) and the highest death, transplant, or ventricular fibrillation events (P = .093 vs TNNT2; P = .024 vs TNNI3; Kaplan Meir: P = .025). S:N analysis yielded hot spots of diagnostic significance within the tropomyosin-binding domains, α-helix 1, and the N-Terminus in TNNT2 with increased sudden cardiac death and ventricular fibrillation (P = .004). The inhibitory region and C-terminal region in TNNI3 exhibited increased restrictive cardiomyopathy (P =.008). HCM and RCM models tended to have increased calcium sensitivity and DCM decreased sensitivity (P < .001). DCM and HCM studies typically showed no differences in Hill coefficient which was decreased in RCM models (P < .001). CM models typically demonstrated no changes to Fmax (P = .239). CONCLUSION: TNNC1-positive probands had younger ages of diagnosis and poorer clinical outcomes. Mapping of TNN variants identified locations in TNNT2 and TNNI3 associated with heightened pathogenicity, RCM diagnosis, and increased risk of sudden death.


Asunto(s)
Alelos , Cardiomiopatías/genética , Cardiomiopatías/mortalidad , Predisposición Genética a la Enfermedad , Variación Genética , Sitios de Carácter Cuantitativo , Troponina/genética , Edad de Inicio , Sustitución de Aminoácidos , Cardiomiopatías/diagnóstico , Mapeo Cromosómico , Bases de Datos Genéticas , Estudios de Asociación Genética , Genotipo , Humanos , Evaluación del Resultado de la Atención al Paciente , Pronóstico , Troponina/metabolismo , Troponina I/genética , Troponina T/genética
13.
Biochemistry ; 59(37): 3487-3497, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32840354

RESUMEN

Calcium binding to troponin C (TnC) is insufficient for full activation of myosin ATPase activity by actin-tropomyosin-troponin. Previous attempts to investigate full activation utilized ATP-free myosin or chemically modified myosin to stabilize the active state of regulated actin. We utilized the Δ14-TnT and the A8V-TnC mutants to stabilize the activated state at saturating Ca2+ and to eliminate one of the inactive states at low Ca2+. The observed effects differed in solution studies and in the more ordered in vitro motility assay and in skinned cardiac muscle preparations. At saturating Ca2+, full activation with Δ14-TnT·A8V-TnC decreased the apparent KM for actin-activated ATPase activity compared to bare actin filaments. Rates of in vitro motility increased at both high and low Ca2+ with Δ14-TnT; the maximum shortening speed at high Ca2+ increased 1.8-fold. Cardiac muscle preparations exhibited increased Ca2+ sensitivity and large increases in resting force with either Δ14-TnT or Δ14-TnT·A8V-TnC. We also observed a significant increase in the maximal rate of tension redevelopment. The results of full activation with Ca2+ and Δ14-TnT·A8V-TnC confirmed and extended several earlier observations using other means of reaching full activation. Furthermore, at low Ca2+, elimination of the first inactive state led to partial activation. This work also confirms, in three distinct experimental systems, that troponin is able to stabilize the active state of actin-tropomyosin-troponin without the need for high-affinity myosin binding. The results are relevant to the reason for two inactive states and for the role of force producing myosin in regulation.


Asunto(s)
Actinas/metabolismo , Calcio/metabolismo , Movimiento Celular , Miocardio/metabolismo , Tropomiosina/metabolismo , Troponina C/metabolismo , Troponina T/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Bovinos , Humanos , Miocardio/citología , Unión Proteica , Troponina C/química , Troponina C/genética , Troponina T/química , Troponina T/genética
14.
Arch Biochem Biophys ; 663: 95-100, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30584890

RESUMEN

The cardiac contraction-relaxation cycle is controlled by a sophisticated set of machinery. Of particular interest, is the revelation that allosteric networks transmit effects of binding at one site to influence troponin complex dynamics and structural-mediated signaling in often distal, functional sites in the myofilament. Our recent observations provide compelling evidence that allostery can explain the function of large-scale macromolecular events. Here we elaborate on our recent findings of interdomain communication within troponin C, using cutting-edge structural biology approaches, and highlight the importance of unveiling the unknown, distant communication networks within this system to obtain more comprehensive knowledge of how allostery impacts cardiac physiology and disease.


Asunto(s)
Troponina C/metabolismo , Troponina I/metabolismo , Regulación Alostérica , Secuencia de Aminoácidos , Animales , Humanos , Unión Proteica , Relación Estructura-Actividad , Troponina C/química , Troponina I/química
15.
J Mol Cell Cardiol ; 114: 320-327, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29217433

RESUMEN

BACKGROUND: Mutations in cardiac troponin T (TnT) are linked to increased risk of ventricular arrhythmia and sudden death despite causing little to no cardiac hypertrophy. Studies in mice suggest that the hypertrophic cardiomyopathy (HCM)-associated TnT-I79N mutation increases myofilament Ca sensitivity and is arrhythmogenic, but whether findings from mice translate to human cardiomyocyte electrophysiology is not known. OBJECTIVES: To study the effects of the TnT-I79N mutation in human cardiomyocytes. METHODS: Using CRISPR/Cas9, the TnT-I79N mutation was introduced into human induced pluripotent stem cells (hiPSCs). We then used the matrigel mattress method to generate single rod-shaped cardiomyocytes (CMs) and studied contractility, Ca handling and electrophysiology. RESULTS: Compared to isogenic control hiPSC-CMs, TnT-I79N hiPSC-CMs exhibited sarcomere disorganization, increased systolic function and impaired relaxation. The Ca-dependence of contractility was leftward shifted in mutation containing cardiomyocytes, demonstrating increased myofilament Ca sensitivity. In voltage-clamped hiPSC-CMs, TnT-I79N reduced intracellular Ca transients by enhancing cytosolic Ca buffering. These changes in Ca handling resulted in beat-to-beat instability and triangulation of the cardiac action potential, which are predictors of arrhythmia risk. The myofilament Ca sensitizer EMD57033 produced similar action potential triangulation in control hiPSC-CMs. CONCLUSIONS: The TnT-I79N hiPSC-CM model not only reproduces key cellular features of TnT-linked HCM such as myofilament disarray, hypercontractility and diastolic dysfunction, but also suggests that this TnT mutation causes pro-arrhythmic changes of the human ventricular action potential.


Asunto(s)
Potenciales de Acción , Arritmias Cardíacas/genética , Cardiomiopatía Hipertrófica/genética , Células Madre Pluripotentes Inducidas/metabolismo , Mutación/genética , Miocitos Cardíacos/metabolismo , Miofibrillas/patología , Troponina T/genética , Secuencia de Bases , Calcio/metabolismo , Cardiomiopatía Hipertrófica/fisiopatología , Citosol/metabolismo , Humanos , Contracción Miocárdica , Sarcómeros/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Sístole
16.
FASEB J ; 31(6): 2492-2506, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28235781

RESUMEN

Cardiovascular dysfunction is highly comorbid with mood disorders, such as anxiety and depression. However, the mechanisms linking cardiovascular dysfunction with the core behavioral features of mood disorder remain poorly understood. In this study, we used mice bearing a knock-in sarcomeric mutation, which is exhibited in human hypertrophic cardiomyopathy (HCM), to investigate the influence of HCM over the development of anxiety and depression. We employed behavioral, MRI, and biochemical techniques in young (3-4 mo) and aged adult (7-8 mo) female mice to examine the effects of HCM on the development of anxiety- and depression-like behaviors. We focused on females because in both humans and rodents, they experience a 2-fold increase in mood disorder prevalence vs. males. Our results showed that young and aged HCM mice displayed echocardiographic characteristics of the heart disease condition, yet only aged HCM females displayed anxiety- and depression-like behaviors. Electrocardiographic parameters of sympathetic nervous system activation were increased in aged HCM females vs. controls and correlated with mood disorder-related symptoms. In addition, when compared with controls, aged HCM females exhibited adrenal gland hypertrophy, reduced volume in mood-related brain regions, and reduced hippocampal signaling proteins, such as brain-derived neurotrophic factor and its downstream targets vs. controls. In conclusion, prolonged systemic HCM stress can lead to development of mood disorders, possibly through inducing structural and functional brain changes, and thus, mood disorders in patients with heart disease should not be considered solely a psychologic or situational condition.-Dossat, A. M., Sanchez-Gonzalez, M. A., Koutnik, A. P., Leitner, S., Ruiz, E. L., Griffin, B., Rosenberg, J. T., Grant, S. C., Fincham, F. D., Pinto, J. R. Kabbaj, M. Pathogenesis of depression- and anxiety-like behavior in an animal model of hypertrophic cardiomyopathy.


Asunto(s)
Ansiedad/genética , Cardiomiopatía Hipertrófica/complicaciones , Depresión/genética , Envejecimiento , Animales , Cardiomiopatía Hipertrófica/genética , Vías Eferentes , Femenino , Técnicas de Sustitución del Gen , Humanos , Ratones , Mutación , Sarcómeros/genética , Sistema Nervioso Simpático/fisiología , Nervio Vago
17.
Biophys J ; 112(8): 1726-1736, 2017 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-28445763

RESUMEN

The cardiac troponin C (TnC)-A8V mutation is associated with hypertrophic and restrictive cardiomyopathy (HCM and RCM) in human and mice. The residue affected lies in the N-helix, a region known to affect Ca2+-binding affinity to the N-terminal domain. Here we report on the functional effects of this mutation in skinned papillary muscle fibers from homozygous knock-in TnC-A8V mice. Muscle fibers from left ventricle were activated at 25°C under the ionic conditions of working cardiomyocytes. The pCa-tension relationship showed a 3× increase in Ca2+-sensitivity and a decrease (0.8×) in cooperativity (nH) in mutant fibers. The elementary steps of the cross-bridge (CB) cycle were investigated by sinusoidal analysis. The ATP study revealed that there is no significant change in the affinity of ATP (K1) for the myosin head. In TnC-A8V mutant fibers, the CB detachment rate (k2) and its equilibrium constant (K2) increased (1.5×). The phosphate study revealed that rate constant of the force-generation step (k4) decreased (0.5×), reversal step (k-4) increased (2×), and the phosphate-release step (1/K5) increased (2×). Pro-Q Diamond staining of the skinned fibers samples revealed no significant changes in total phosphorylation of multiple sarcomeric proteins. Further investigation using liquid chromatography-tandem mass spectrometry revealed hypophosphorylation of the rod domain of myosin heavy chain in TnC-A8V mutant fibers compared to wild-type. Immunoblotting confirmed the results observed in the mass spectrometry analysis. The results suggest perturbed CB kinetics-possibly caused by changes in the α-myosin heavy chain phosphorylation profile-as a novel mechanism, to our knowledge, by which a mutation in TnC can have rippling effects in the myofilament and contribute to the pathogenesis of HCM/RCM.


Asunto(s)
Cardiomiopatía Hipertrófica/metabolismo , Miofibrillas/metabolismo , Subfragmentos de Miosina/metabolismo , Músculos Papilares/metabolismo , Troponina C/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Cationes Bivalentes/metabolismo , Cromatografía Liquida , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Immunoblotting , Cinética , Ratones Transgénicos , Cadenas Pesadas de Miosina/metabolismo , Fosforilación , Espectrometría de Masas en Tándem , Troponina C/genética
18.
Biochemistry ; 56(23): 2928-2937, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28530094

RESUMEN

Striated muscle contraction is regulated by the actin-associated proteins tropomyosin and troponin. The extent of activation of myosin ATPase activity is lowest in the absence of both Ca2+ and activating cross-bridges (i.e., S1-ADP or rigor S1). Binding of activating species of myosin to actin at a saturating Ca2+ concentration stabilizes the most active state (M state) of the actin-tropomyosin-troponin complex (regulated actin). Ca2+ binding alone produces partial stabilization of the active state. The extent of stabilization at a saturating Ca2+ concentration depends on the isoform of the troponin subunits, the phosphorylation state of troponin, and, in the case of cardiac muscle, the presence of hypertrophic cardiomyopathy-producing mutants of troponin T and troponin I. Cardiac dysfunction is also associated with mutations of troponin C (TnC). Troponin C mutants A8V, C84Y, and D145E increase the Ca2+ sensitivity of ATPase activity. We show that these mutants change the distribution of regulated actin states. The A8V and C84Y TnC mutants decreased the inactive B state distribution slightly at low Ca2+ concentrations, but the D145E mutants had no effect on that state. All TnC mutants increased the level of the active M state compared to that of the wild type, at a saturating Ca2+ concentration. Troponin complexes that contained two mutations that stabilize the active M state, A8V TnC and Δ14 TnT, appeared to be completely in the active state in the presence of only Ca2+. Because Ca2+ gives full activation, in this situation, troponin must be capable of positioning tropomyosin in the active M state without the need for rigor myosin binding.


Asunto(s)
Actinas/metabolismo , Eliminación de Gen , Mutación , Tropomiosina/metabolismo , Troponina C/metabolismo , Troponina T/metabolismo , Actinas/química , Adenosina Trifosfato/metabolismo , Sustitución de Aminoácidos , Animales , Señalización del Calcio , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Bovinos , Humanos , Cinética , Radioisótopos de Fósforo , Multimerización de Proteína , Estabilidad Proteica , Conejos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tropomiosina/química , Troponina C/química , Troponina C/genética , Troponina T/química , Troponina T/genética
19.
J Physiol ; 595(14): 4677-4693, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28436080

RESUMEN

KEY POINTS: Mutations in genes encoding cardiac troponin I (TNNI3) and cardiac troponin T (TNNT2) caused altered troponin protein stoichiometry in patients with dilated cardiomyopathy. TNNI3p.98trunc resulted in haploinsufficiency, increased Ca2+ -sensitivity and reduced length-dependent activation. TNNT2p.K217del caused increased passive tension. A mutation in the gene encoding Lamin A/C (LMNAp.R331Q ) led to reduced maximal force development through secondary disease remodelling in patients suffering from dilated cardiomyopathy. Our study shows that different gene mutations induce dilated cardiomyopathy via diverse cellular pathways. ABSTRACT: Dilated cardiomyopathy (DCM) can be caused by mutations in sarcomeric and non-sarcomeric genes. In this study we defined the pathogenic effects of three DCM-causing mutations: the sarcomeric mutations in genes encoding cardiac troponin I (TNNI3p.98truncation ) and cardiac troponin T (TNNT2p.K217deletion ; also known as the p.K210del) and the non-sarcomeric gene mutation encoding lamin A/C (LMNAp.R331Q ). We assessed sarcomeric protein expression and phosphorylation and contractile behaviour in single membrane-permeabilized cardiomyocytes in human left ventricular heart tissue. Exchange with recombinant troponin complex was used to establish the direct pathogenic effects of the mutations in TNNI3 and TNNT2. The TNNI3p.98trunc and TNNT2p.K217del mutation showed reduced expression of troponin I to 39% and 51%, troponin T to 64% and 53%, and troponin C to 73% and 97% of controls, respectively, and altered stoichiometry between the three cardiac troponin subunits. The TNNI3p.98trunc showed pure haploinsufficiency, increased Ca2+ -sensitivity and impaired length-dependent activation. The TNNT2p.K217del mutation showed a significant increase in passive tension that was not due to changes in titin isoform composition or phosphorylation. Exchange with wild-type troponin complex corrected troponin protein levels to 83% of controls in the TNNI3p.98trunc sample. Moreover, upon exchange all functional deficits in the TNNI3p.98trunc and TNNT2p.K217del samples were normalized to control values confirming the pathogenic effects of the troponin mutations. The LMNAp.R331Q mutation resulted in reduced maximal force development due to disease remodelling. Our study shows that different gene mutations induce DCM via diverse cellular pathways.


Asunto(s)
Cardiomiopatía Dilatada/genética , Lamina Tipo A/genética , Troponina I/genética , Adulto , Conectina/metabolismo , Femenino , Genotipo , Ventrículos Cardíacos/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Mutación , Miocitos Cardíacos/metabolismo , Fosforilación , Troponina I/metabolismo , Adulto Joven
20.
J Mol Cell Cardiol ; 99: 218-229, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26529187

RESUMEN

Up-regulation of desmin has been reported in cardiac hypertrophy and failure but the pathophysiological cause and significance remain to be investigated. By examining genetically modified mouse models representative for diastolic or systolic heart failure, we found significantly increased levels of desmin and α-actinin in the myofibrils of hearts with impaired diastolic function but not hearts with weakened systolic function. The increased desmin and α-actinin are mainly found in myofibrils at the Z-disks. Two weeks of transverse aortic constriction (TAC) induced increases of desmin and α-actinin in mouse hearts of occult diastolic failure but not in wild type or transgenic mouse hearts with mildly lowered systolic function or with increased diastolic function. The chronic or TAC-induced increase of desmin showed no proportional increase in phosphorylation, implicating an up-regulated expression rather than a decreased protein turnover. The data demonstrate a novel early response specifically to diastolic heart failure, indicating a function of the Z-disk in the challenging clinical condition of heart failure with preserved ejection fraction (HFpEF).


Asunto(s)
Actinina/metabolismo , Desmina/metabolismo , Diástole , Miocitos Cardíacos/metabolismo , Miofibrillas/metabolismo , Disfunción Ventricular/metabolismo , Adaptación Biológica , Animales , Biomarcadores , Modelos Animales de Enfermedad , Ecocardiografía , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Ratones , Sístole , Disfunción Ventricular/diagnóstico , Disfunción Ventricular/etiología , Disfunción Ventricular/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA