RESUMEN
This paper addresses an important debate in Amazonian studies; namely, the scale, intensity, and nature of human modification of the forests in prehistory. Phytolith and charcoal analysis of terrestrial soils underneath mature tierra firme (nonflooded, nonriverine) forests in the remote Medio Putumayo-Algodón watersheds, northeastern Peru, provide a vegetation and fire history spanning at least the past 5,000 y. A tree inventory carried out in the region enables calibration of ancient phytolith records with standing vegetation and estimates of palm species densities on the landscape through time. Phytolith records show no evidence for forest clearing or agriculture with major annual seed and root crops. Frequencies of important economic palms such as Oenocarpus, Euterpe, Bactris, and Astrocaryum spp., some of which contain hyperdominant species in the modern flora, do not increase through prehistoric time. This indicates pre-Columbian occupations, if documented in the region with future research, did not significantly increase the abundance of those species through management or cultivation. Phytoliths from other arboreal and woody species similarly reflect a stable forest structure and diversity throughout the records. Charcoal 14C dates evidence local forest burning between ca. 2,800 and 1,400 y ago. Our data support previous research indicating that considerable areas of some Amazonian tierra firme forests were not significantly impacted by human activities during the prehistoric era. Rather, it appears that over the last 5,000 y, indigenous populations in this region coexisted with, and helped maintain, large expanses of relatively unmodified forest, as they continue to do today.
Asunto(s)
Incendios , Bosques , Efectos Antropogénicos , PerúRESUMEN
Environmental and dispersal filters are key determinants of species distributions of Amazonian tree communities. However, a comprehensive analysis of the role of environmental and dispersal filters is needed to understand the ecological and evolutionary processes that drive phylogenetic and taxonomic turnover of Amazonian tree communities. We compare measures of taxonomic and phylogenetic beta diversity in 41 one-hectare plots to test the relative importance of climate, soils, geology, geomorphology, pure spatial variables and the spatial variation of environmental drivers of phylogenetic and taxonomic turnover in Ecuadorian Amazon tree communities. We found low phylogenetic and high taxonomic turnover with respect to environmental and dispersal filters. In addition, our results suggest that climate is a significantly better predictor of phylogenetic turnover and taxonomic turnover than geomorphology and soils at all spatial scales. The influence of climate as a predictor of phylogenetic turnover was stronger at broader spatial scales (50 km2) whereas geomorphology and soils appear to be better predictors of taxonomic turnover at mid (5 km2) and fine spatial scales (0.5 km2) but a weak predictor of phylogenetic turnover at broad spatial scales. We also found that the combined effect of geomorphology and soils was significantly higher for taxonomic turnover at all spatial scales but not for phylogenetic turnover at large spatial scales. Geographic distances as proxy of dispersal limitation was a better predictor of phylogenetic turnover at distances of 50 < 500 km. Our findings suggest that climatic variation at regional scales can better predict phylogenetic and taxonomic turnover than geomorphology and soils.
Asunto(s)
Biodiversidad , FilogeniaRESUMEN
Neutral models are often used as null models, testing the relative importance of niche versus neutral processes in shaping diversity. Most versions, however, focus only on regional scale predictions and neglect local level contributions. Recently, a new formulation of spatial neutral theory was published showing an incompatibility between regional and local scale fits where especially the number of rare species was dramatically under-predicted. Using a forward in time semi-spatially explicit neutral model and a unique large-scale Amazonian tree inventory data set, we show that neutral theory not only underestimates the number of rare species but also fails in predicting the excessive dominance of species on both regional and local levels. We show that although there are clear relationships between species composition, spatial and environmental distances, there is also a clear differentiation between species able to attain dominance with and without restriction to specific habitats. We conclude therefore that the apparent dominance of these species is real, and that their excessive abundance can be attributed to fitness differences in different ways, a clear violation of the ecological equivalence assumption of neutral theory.
Asunto(s)
Biodiversidad , Ecología , Árboles , Ecosistema , Modelos Biológicos , Especificidad de la EspecieRESUMEN
The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon. With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment and other environmental stresses. As pressures mount, it is vital to know whether existing reserves can sustain their biodiversity. A critical constraint in addressing this question has been that data describing a broad array of biodiversity groups have been unavailable for a sufficiently large and representative sample of reserves. Here we present a uniquely comprehensive data set on changes over the past 20 to 30 years in 31 functional groups of species and 21 potential drivers of environmental change, for 60 protected areas stratified across the world's major tropical regions. Our analysis reveals great variation in reserve 'health': about half of all reserves have been effective or performed passably, but the rest are experiencing an erosion of biodiversity that is often alarmingly widespread taxonomically and functionally. Habitat disruption, hunting and forest-product exploitation were the strongest predictors of declining reserve health. Crucially, environmental changes immediately outside reserves seemed nearly as important as those inside in determining their ecological fate, with changes inside reserves strongly mirroring those occurring around them. These findings suggest that tropical protected areas are often intimately linked ecologically to their surrounding habitats, and that a failure to stem broad-scale loss and degradation of such habitats could sharply increase the likelihood of serious biodiversity declines.
Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/estadística & datos numéricos , Especies en Peligro de Extinción/estadística & datos numéricos , Árboles/fisiología , Clima Tropical , Agricultura/estadística & datos numéricos , Animales , Recolección de Datos , Ecología/estadística & datos numéricos , Contaminación Ambiental/efectos adversos , Contaminación Ambiental/estadística & datos numéricos , Incendios/estadística & datos numéricos , Agricultura Forestal/estadística & datos numéricos , Entrevistas como Asunto , Minería/estadística & datos numéricos , Crecimiento Demográfico , Lluvia , Reproducibilidad de los Resultados , Investigadores , Encuestas y Cuestionarios , TemperaturaRESUMEN
The Amazon rain forest sustains the world's highest tree diversity, but it remains unclear why some clades of trees are hyperdiverse, whereas others are not. Using dated phylogenies, estimates of current species richness and trait and demographic data from a large network of forest plots, we show that fast demographic traits--short turnover times--are associated with high diversification rates across 51 clades of canopy trees. This relationship is robust to assuming that diversification rates are either constant or decline over time, and occurs in a wide range of Neotropical tree lineages. This finding reveals the crucial role of intrinsic, ecological variation among clades for understanding the origin of the remarkable diversity of Amazonian trees and forests.
Asunto(s)
Biodiversidad , Modelos Biológicos , Árboles/fisiología , América del Sur , Clima TropicalRESUMEN
Recent exploratory field expeditions to the western slopes of the Ecuadorian Andes resulted in the discovery of a new species of Amalophyllon (Gesneriaceae). Amalophyllonmiraculum J.L.Clark, sp. nov. is described from two localities in the Centinela region in the Santo Domingo de los Tsáchilas province. The new species is differentiated from congeners by the pendent habit, basal rosette of leaves, leaf blades with deeply serrate margins, and miniature size. Based on IUCN guidelines, a preliminary conservation status is assigned as Critically Endangered (CR).
ResumenRecientes expediciones exploratorias de campo a las laderas occidentales de los Andes ecuatorianos dieron como resultado el descubrimiento de una nueva especie de Amalophyllon (Gesneriaceae). Amalophyllonmiraculum J.L.Clark, sp. nov. se describe de dos localidades de la región de Centinela en la provincia de Santo Domingo de los Tsáchilas. La nueva especie se diferencia de otros congéneres por el hábito colgante, la roseta basal de las hojas, las láminas foliares con márgenes profundamente aserrados y su tamaño en miniatura. Según las directrices de la UICN, se le asigna el estado de conservación preliminar de En Peligro Crítico (CR).
RESUMEN
The presence of Andean plant genera in moist forests of the Brazilian Atlantic Coast has been historically hypothesized as the result of cross-continental migrations starting at the eastern Andean flanks. Here we test hypotheses of former connections between the Atlantic and Andean forests by examining distribution patterns of selected cool and moist-adapted plant arboreal taxa present in 54 South American pollen records of the Last Glacial Maximum (LGM), ca. 19-23 cal ka, known to occur in both plant domains. Pollen taxa studied include Araucaria, Drimys, Hedyosmum, Ilex, Myrsine, Podocarpus, Symplocos, Weinmannia, Myrtaceae, Ericaceae and Arecaceae. Past connectivity patterns between these two neotropical regions as well as individual ecological niches during the LGM were explored by cluster analysis of fossil assemblages and modern plant distributions. Additionally, we examined the ecological niche of 137 plant species with shared distributions between the Andes and coastal Brazil. Our results revealed five complex connectivity patterns for South American vegetation linking Andean, Amazonian and Atlantic Forests and one disjunction distribution in southern Chile. This study also provides a better understanding of vegetation cover on the large and shallow South American continental shelf that was exposed due to a global sea level drop.
Asunto(s)
Ecosistema , Bosques , Brasil , Chile , ÁrbolesRESUMEN
Scientists' limited understanding of tropical plant communities obscures the true extent of species loss caused by habitat destruction1. The Centinelan extinction hypothesis2,3 posits an extreme but widely referenced scenario wherein forest clearing causes the immediate extinction of species known only from a single geographic location. It remains unclear, however, whether the disappearance of such microendemics reflects their global extinction or insufficient collection effort at larger scales. Here we test these hypotheses by synthesizing decades of floristic data from the heavily deforested tropical cloud forest (TCF) at Centinela, Ecuador. We find that 99% of its putative microendemics have been collected elsewhere and are not extinct. Our field work also revealed new species, highlighting the enduring conservation value of TCFs and the intense efforts required to illuminate such plant diversity 'darkspots'4. Field and herbarium research remain essential to the conservation action needed to forestall large-scale plant extinctions in Earth's beleaguered cloud forests.
RESUMEN
Amazonia's floodplain system is the largest and most biodiverse on Earth. Although forests are crucial to the ecological integrity of floodplains, our understanding of their species composition and how this may differ from surrounding forest types is still far too limited, particularly as changing inundation regimes begin to reshape floodplain tree communities and the critical ecosystem functions they underpin. Here we address this gap by taking a spatially explicit look at Amazonia-wide patterns of tree-species turnover and ecological specialization of the region's floodplain forests. We show that the majority of Amazonian tree species can inhabit floodplains, and about a sixth of Amazonian tree diversity is ecologically specialized on floodplains. The degree of specialization in floodplain communities is driven by regional flood patterns, with the most compositionally differentiated floodplain forests located centrally within the fluvial network and contingent on the most extraordinary flood magnitudes regionally. Our results provide a spatially explicit view of ecological specialization of floodplain forest communities and expose the need for whole-basin hydrological integrity to protect the Amazon's tree diversity and its function.
Asunto(s)
Biodiversidad , Inundaciones , Ríos , Árboles , Brasil , BosquesRESUMEN
We describe the geographical variation in tree species composition across Amazonian forests and show how environmental conditions are associated with species turnover. Our analyses are based on 2023 forest inventory plots (1 ha) that provide abundance data for a total of 5188 tree species. Within-plot species composition reflected both local environmental conditions (especially soil nutrients and hydrology) and geographical regions. A broader-scale view of species turnover was obtained by interpolating the relative tree species abundances over Amazonia into 47,441 0.1-degree grid cells. Two main dimensions of spatial change in tree species composition were identified. The first was a gradient between western Amazonia at the Andean forelands (with young geology and relatively nutrient-rich soils) and central-eastern Amazonia associated with the Guiana and Brazilian Shields (with more ancient geology and poor soils). The second gradient was between the wet forests of the northwest and the drier forests in southern Amazonia. Isolines linking cells of similar composition crossed major Amazonian rivers, suggesting that tree species distributions are not limited by rivers. Even though some areas of relatively sharp species turnover were identified, mostly the tree species composition changed gradually over large extents, which does not support delimiting clear discrete biogeographic regions within Amazonia.
Asunto(s)
Árboles , Brasil , Biodiversidad , Bosques , Suelo/química , Geografía , FilogeografíaRESUMEN
Indigenous societies are known to have occupied the Amazon basin for more than 12,000 years, but the scale of their influence on Amazonian forests remains uncertain. We report the discovery, using LIDAR (light detection and ranging) information from across the basin, of 24 previously undetected pre-Columbian earthworks beneath the forest canopy. Modeled distribution and abundance of large-scale archaeological sites across Amazonia suggest that between 10,272 and 23,648 sites remain to be discovered and that most will be found in the southwest. We also identified 53 domesticated tree species significantly associated with earthwork occurrence probability, likely suggesting past management practices. Closed-canopy forests across Amazonia are likely to contain thousands of undiscovered archaeological sites around which pre-Columbian societies actively modified forests, a discovery that opens opportunities for better understanding the magnitude of ancient human influence on Amazonia and its current state.
Asunto(s)
Arqueología , Bosques , Humanos , BrasilRESUMEN
In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important constraints via predictions using least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree inventories across seven forest types and thirteen functional traits, representing major global axes of plant strategies. Results show that constraints formed by regional relative abundances of genera explain eight times more of local relative abundances than constraints based on directional selection for specific functional traits, although the latter does show clear signals of environmental dependency. These results provide a quantitative insight by inference from large-scale data using cross-disciplinary methods, furthering our understanding of ecological dynamics.
Asunto(s)
Biodiversidad , Ecosistema , Entropía , Bosques , Plantas , Ecología , Clima TropicalRESUMEN
Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution.
Asunto(s)
ARN Largo no Codificante , Árboles , Bosques , Suelo , TemperaturaRESUMEN
The world's greatest terrestrial stores of biodiversity and carbon are found in the forests of northern South America, where large-scale biogeographic patterns and processes have recently begun to be described. Seven of the nine countries with territory in the Amazon basin and the Guiana shield have carried out large-scale forest inventories, but such massive data sets have been little exploited by tropical plant ecologists. Although forest inventories often lack the species-level identifications favoured by tropical plant ecologists, their consistency of measurement and vast spatial coverage make them ideally suited for numerical analyses at large scales, and a valuable resource to describe the still poorly understood spatial variation of biomass, diversity, community composition and forest functioning across the South American tropics. Here we show, by using the seven forest inventories complemented with trait and inventory data collected elsewhere, two dominant gradients in tree composition and function across the Amazon, one paralleling a major gradient in soil fertility and the other paralleling a gradient in dry season length. The data set also indicates that the dominance of Fabaceae in the Guiana shield is not necessarily the result of root adaptations to poor soils (nodulation or ectomycorrhizal associations) but perhaps also the result of their remarkably high seed mass there as a potential adaptation to low rates of disturbance.
Asunto(s)
Biodiversidad , Árboles/clasificación , Árboles/fisiología , Clima Tropical , Biomasa , Ecosistema , Dinámica Poblacional , Lluvia , Estaciones del Año , América del SurRESUMEN
We report the rediscovery of the Critically Endangered cloud forest herb Gasteranthusextinctus, not seen since 1985. In 2019 and 2021, G.extinctus was recorded at five sites in the western foothills of the Ecuadorian Andes, 4-25 km from the type locality at the celebrated Centinela ridge. We describe the species' distribution, abundance, habitat and conservation status and offer recommendations for further research and conservation efforts focused on G.extinctus and the small, disjunct forest remnants it occupies.
RESUMEN
Field photographs of plant species are crucial for research and conservation, but the lack of a centralized database makes them difficult to locate. We surveyed 25 online databases of field photographs and found that they harboured only about 53% of the approximately 125,000 vascular plant species of the Americas. These results reflect the urgent need for a centralized database that can both integrate and complete the photographic record of the world's flora.
Asunto(s)
Biodiversidad , Bases de Datos Factuales/estadística & datos numéricos , Geografía/estadística & datos numéricos , Fotograbar/estadística & datos numéricos , Plantas , AméricasRESUMEN
Meeting international commitments to protect 17% of terrestrial ecosystems worldwide will require >3 million square kilometers of new protected areas and strategies to create those areas in a way that respects local communities and land use. In 2000-2016, biological and social scientists worked to increase the protected proportion of Peru's largest department via 14 interdisciplinary inventories covering >9 million hectares of this megadiverse corner of the Amazon basin. In each landscape, the strategy was the same: convene diverse partners, identify biological and sociocultural assets, document residents' use of natural resources, and tailor the findings to the needs of decision-makers. Nine of the 14 landscapes have since been protected (5.7 million hectares of new protected areas), contributing to a quadrupling of conservation coverage in Loreto (from 6 to 23%). We outline the methods and enabling conditions most crucial for successfully applying similar campaigns elsewhere on Earth.
RESUMEN
Competition among trees is an important driver of community structure and dynamics in tropical forests. Neighboring trees may impact an individual tree's growth rate and probability of mortality, but large-scale geographic and environmental variation in these competitive effects has yet to be evaluated across the tropical forest biome. We quantified effects of competition on tree-level basal area growth and mortality for trees ≥10-cm diameter across 151 ~1-ha plots in mature tropical forests in Amazonia and tropical Africa by developing nonlinear models that accounted for wood density, tree size, and neighborhood crowding. Using these models, we assessed how water availability (i.e., climatic water deficit) and soil fertility influenced the predicted plot-level strength of competition (i.e., the extent to which growth is reduced, or mortality is increased, by competition across all individual trees). On both continents, tree basal area growth decreased with wood density and increased with tree size. Growth decreased with neighborhood crowding, which suggests that competition is important. Tree mortality decreased with wood density and generally increased with tree size, but was apparently unaffected by neighborhood crowding. Across plots, variation in the plot-level strength of competition was most strongly related to plot basal area (i.e., the sum of the basal area of all trees in a plot), with greater reductions in growth occurring in forests with high basal area, but in Amazonia, the strength of competition also varied with plot-level wood density. In Amazonia, the strength of competition increased with water availability because of the greater basal area of wetter forests, but was only weakly related to soil fertility. In Africa, competition was weakly related to soil fertility and invariant across the shorter water availability gradient. Overall, our results suggest that competition influences the structure and dynamics of tropical forests primarily through effects on individual tree growth rather than mortality and that the strength of competition largely depends on environment-mediated variation in basal area.
Asunto(s)
Bosques , Madera , África , Brasil , Ecosistema , Clima TropicalRESUMEN
Amazonian forests are extraordinarily diverse, but the estimated species richness is very much debated. Here, we apply an ensemble of parametric estimators and a novel technique that includes conspecific spatial aggregation to an extended database of forest plots with up-to-date taxonomy. We show that the species abundance distribution of Amazonia is best approximated by a logseries with aggregated individuals, where aggregation increases with rarity. By averaging several methods to estimate total richness, we confirm that over 15,000 tree species are expected to occur in Amazonia. We also show that using ten times the number of plots would result in an increase to just ~50% of those 15,000 estimated species. To get a more complete sample of all tree species, rigorous field campaigns may be needed but the number of trees in Amazonia will remain an estimate for years to come.
Asunto(s)
Biodiversidad , Clasificación/métodos , Bosques , Ríos , Árboles/clasificación , BrasilRESUMEN
To provide an empirical foundation for estimates of the Amazonian tree diversity, we recently published a checklist of 11,675 tree species recorded to date in the region (ter Steege H, et al. (2016) The discovery of the Amazonian tree flora with an updated checklist of all known tree taxa. Scientific Reports 6:29549). From this total of plant records compiled from public databases and literature, widely used in studies on the Amazonian plant diversity, only 6,727 tree species belong to the first taxonomically-vetted checklist published for the region (Cardoso D, et al. (2017) Amazon plant diversity revealed by a taxonomically verified species list. PNAS 114:10695-10700). The striking difference in these two numbers spurred us to evaluate both lists, in order to release an improved Amazonian tree list; to discuss species inclusion criteria; and to highlight the ecological importance of verifying the occurrence of "non-Amazonian" trees in the region through the localization and identification of specimens. A number of species in the 2016 checklist that are not trees, non-native, synonyms, or misspellings were removed and corresponded to about 23% of the names. Species not included in the taxonomically-vetted checklist but verified by taxonomists to occur in Amazonia as trees were retained. Further, the inclusion of recently recorded/new species (after 2016), and recent taxonomic changes added up to an updated checklist including 10,071 species recorded for the Amazon region and shows the dynamic nature of establishing an authoritative checklist of Amazonian tree species. Completing and improving this list is a long-term, high-value commitment that will require a collaborative approach involving ecologists, taxonomists, and practitioners.