Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 620(7974): 634-642, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37438525

RESUMEN

The physiological functions of mast cells remain largely an enigma. In the context of barrier damage, mast cells are integrated in type 2 immunity and, together with immunoglobulin E (IgE), promote allergic diseases. Allergic symptoms may, however, facilitate expulsion of allergens, toxins and parasites and trigger future antigen avoidance1-3. Here, we show that antigen-specific avoidance behaviour in inbred mice4,5 is critically dependent on mast cells; hence, we identify the immunological sensor cell linking antigen recognition to avoidance behaviour. Avoidance prevented antigen-driven adaptive, innate and mucosal immune activation and inflammation in the stomach and small intestine. Avoidance was IgE dependent, promoted by Th2 cytokines in the immunization phase and by IgE in the execution phase. Mucosal mast cells lining the stomach and small intestine rapidly sensed antigen ingestion. We interrogated potential signalling routes between mast cells and the brain using mutant mice, pharmacological inhibition, neural activity recordings and vagotomy. Inhibition of leukotriene synthesis impaired avoidance, but overall no single pathway interruption completely abrogated avoidance, indicating complex regulation. Collectively, the stage for antigen avoidance is set when adaptive immunity equips mast cells with IgE as a telltale of past immune responses. On subsequent antigen ingestion, mast cells signal termination of antigen intake. Prevention of immunopathology-causing, continuous and futile responses against per se innocuous antigens or of repeated ingestion of toxins through mast-cell-mediated antigen-avoidance behaviour may be an important arm of immunity.


Asunto(s)
Alérgenos , Reacción de Prevención , Hipersensibilidad , Mastocitos , Animales , Ratones , Alérgenos/inmunología , Reacción de Prevención/fisiología , Hipersensibilidad/inmunología , Inmunoglobulina E/inmunología , Mastocitos/inmunología , Estómago/inmunología , Vagotomía , Inmunidad Innata/inmunología , Inmunidad Mucosa/inmunología , Células Th2/inmunología , Citocinas/inmunología , Leucotrienos/biosíntesis , Leucotrienos/inmunología , Intestino Delgado/inmunología
2.
EMBO J ; 42(19): e112507, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37609797

RESUMEN

Queuosine (Q) is a modified nucleoside at the wobble position of specific tRNAs. In mammals, queuosinylation is facilitated by queuine uptake from the gut microbiota and is introduced into tRNA by the QTRT1-QTRT2 enzyme complex. By establishing a Qtrt1 knockout mouse model, we discovered that the loss of Q-tRNA leads to learning and memory deficits. Ribo-Seq analysis in the hippocampus of Qtrt1-deficient mice revealed not only stalling of ribosomes on Q-decoded codons, but also a global imbalance in translation elongation speed between codons that engage in weak and strong interactions with their cognate anticodons. While Q-dependent molecular and behavioral phenotypes were identified in both sexes, female mice were affected more severely than males. Proteomics analysis confirmed deregulation of synaptogenesis and neuronal morphology. Together, our findings provide a link between tRNA modification and brain functions and reveal an unexpected role of protein synthesis in sex-dependent cognitive performance.


Asunto(s)
Nucleósido Q , ARN de Transferencia , Femenino , Ratones , Animales , Nucleósido Q/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Anticodón , Biosíntesis de Proteínas , Codón , Mamíferos/genética
3.
EMBO Rep ; 22(12): e53824, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34734666

RESUMEN

Academic Core Facilities are optimally situated to improve the quality of preclinical research by implementing quality control measures and offering these to their users.

4.
Mol Psychiatry ; 26(4): 1376-1398, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-31444474

RESUMEN

Aberrant fear is a cornerstone of several psychiatric disorders. Consequently, there is large interest in elucidation of signaling mechanisms that link extracellular cues to changes in neuronal function and structure in brain pathways that are important in the generation and maintenance of fear memory and its behavioral expression. Members of the Plexin-B family of receptors for class 4 semaphorins play important roles in developmental plasticity of neurons, and their expression persists in some areas of the adult nervous system. Here, we aimed to elucidate the role of Semaphorin 4C (Sema4C) and its cognate receptor, Plexin-B2, in the expression of contextual and cued fear memory, setting a mechanistic focus on structural plasticity and exploration of contributing signaling pathways. We observed that Plexin-B2 and Sema4C are expressed in forebrain areas related to fear memory, such as the anterior cingulate cortex, amygdala and the hippocampus, and their expression is regulated by aversive stimuli that induce fear memory. By generating forebrain-specific Plexin-B2 knockout mice and analyzing fear-related behaviors, we demonstrate that Sema4C-PlexinB2 signaling plays a crucial functional role in the recent and remote recall of fear memory. Detailed neuronal morphological analyses revealed that Sema4C-PlexinB2 signaling largely mediates fear-induced structural plasticity by enhancing dendritic ramifications and modulating synaptic density in the adult hippocampus. Analyses on signaling-related mutant mice showed that these functions are mediated by PlexinB2-dependent RhoA activation. These results deliver important insights into the mechanistic understanding of maladaptive plasticity in fear circuits and have implications for novel therapeutic strategies against fear-related disorders.


Asunto(s)
Miedo , Memoria , Proteínas del Tejido Nervioso , Semaforinas , Animales , Moléculas de Adhesión Celular , Ratones , Proteínas del Tejido Nervioso/genética , Neuronas , Semaforinas/genética
5.
Mol Psychiatry ; 26(11): 6482-6504, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34021263

RESUMEN

Mutations in SHANK genes play an undisputed role in neuropsychiatric disorders. Until now, research has focused on the postsynaptic function of SHANKs, and prominent postsynaptic alterations in glutamatergic signal transmission have been reported in Shank KO mouse models. Recent studies have also suggested a possible presynaptic function of SHANK proteins, but these remain poorly defined. In this study, we examined how SHANK2 can mediate electrophysiological, molecular, and behavioral effects by conditionally overexpressing either wild-type SHANK2A or the extrasynaptic SHANK2A(R462X) variant. SHANK2A overexpression affected pre- and postsynaptic targets and revealed a reversible, development-dependent autism spectrum disorder-like behavior. SHANK2A also mediated redistribution of Ca2+-permeable AMPA receptors between apical and basal hippocampal CA1 dendrites, leading to impaired synaptic plasticity in the basal dendrites. Moreover, SHANK2A overexpression reduced social interaction and increased the excitatory noise in the olfactory cortex during odor processing. In contrast, overexpression of the extrasynaptic SHANK2A(R462X) variant did not impair hippocampal synaptic plasticity, but still altered the expression of presynaptic/axonal signaling proteins. We also observed an attention-deficit/hyperactivity-like behavior and improved social interaction along with enhanced signal-to-noise ratio in cortical odor processing. Our results suggest that the disruption of pre- and postsynaptic SHANK2 functions caused by SHANK2 mutations has a strong impact on social behavior. These findings indicate that pre- and postsynaptic SHANK2 actions cooperate for normal neuronal function, and that an imbalance between these functions may lead to different neuropsychiatric disorders.


Asunto(s)
Trastorno del Espectro Autista , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Hipocampo/metabolismo , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Receptores AMPA/metabolismo , Conducta Social
6.
Cerebellum ; 16(5-6): 929-937, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28536821

RESUMEN

Neurons communicate through excitatory and inhibitory synapses. Both lines of communication are adjustable and allow the fine tuning of signal exchange required for learning processes in neural networks. Several distinct modes of plasticity modulate glutamatergic and GABAergic synapses in Purkinje cells of the cerebellar cortex to promote motor control and learning. In the present paper, we present evidence for a role of short-term ionic plasticity in the cerebellar circuit activity. This type of plasticity results from altered chloride driving forces at the synapses that molecular layer interneurons form on Purkinje cell dendrites. Previous studies have provided evidence for transiently diminished chloride gradients at these GABAergic synapses following climbing fiber activity. Electrical stimulation of climbing fibers in acute slices caused a decline of inhibitory postsynaptic currents recorded from Purkinje cells. Dendritic calcium-gated chloride channels of the type anoctamin 2 (ANO2) were proposed to mediate this short-term modulation of inhibition, but the significance of this process for motor control has not been established yet. Here, we report results of behavioral studies obtained from Ano2 -/- mice, a mouse line that was previously shown to lack this particular mode of ionic plasticity. The animals display motor coordination deficits that constitute a condition of mild ataxia. Moreover, motor learning is severely impaired in Ano2 -/- mice, suggesting cerebellar dysfunction. This reduced motor performance of Ano2 -/- mice highlights the significance of inhibitory control for cerebellar function and introduces calcium-dependent short-term ionic plasticity as an efficient control mechanism for neural inhibition.


Asunto(s)
Anoctaminas/deficiencia , Aprendizaje/fisiología , Actividad Motora/fisiología , Trastornos del Movimiento/metabolismo , Animales , Anoctaminas/genética , Cerebelo/metabolismo , Cerebelo/patología , Modelos Animales de Enfermedad , Inmunohistoquímica , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Trastornos del Movimiento/patología , Fuerza Muscular/fisiología
8.
Mol Pain ; 122016.
Artículo en Inglés | MEDLINE | ID: mdl-27306409

RESUMEN

BACKGROUND: There is an urgent need to develop and incorporate novel behavioral tests in classically used preclinical pain models. Most rodent studies are based upon stimulus-evoked hindpaw measurements even though chronic pain is usually a day and night experience. Chronic pain is indeed a debilitating condition that influences the sociability and the ability for voluntary tasks, but the relevant behavioral readouts for these aspects are mostly under-represented in the literature. Moreover, we lack standardization in most behavioral paradigms to guarantee reproducibility and ensure adequate discussion between different studies. This concerns not only the combination, application, and duration of particular behavioral tasks but also the effects of different housing conditions implicating social isolation. RESULTS: Our aim was to thoroughly characterize the classically used spared nerve injury model for 12 weeks following surgery. We used a portfolio of classical stimulus-evoked response measurements, detailed gait analysis with two different measuring systems (Dynamic weight bearing (DWB) system and CatWalk), as well as observer-independent voluntary wheel running and home cage monitoring (Laboras system). Additionally, we analyzed the effects of social isolation in all behavioral tasks. We found that evoked hypersensitivity temporally matched changes in static gait parameters, whereas some dynamic gait parameters were changed in a time-dependent manner. Interestingly, voluntary wheel running behavior was not affected in spared nerve injury mice but by social isolation. Besides a reduced climbing activity, spared nerve injury mice did not showed tremendous alterations in the home cage activity. CONCLUSION: This is the first longitudinal study providing detailed insights into various voluntary behavioral parameters related to pain and highlights the importance of social environment on spontaneous non-evoked behaviors in a mouse model of chronic neuropathy. Our results provide fundamental considerations for future experimental planning and discussion of pain-related behavioral changes.


Asunto(s)
Conducta Animal , Vivienda para Animales , Neuralgia/fisiopatología , Animales , Peso Corporal , Marcha , Masculino , Ratones Endogámicos C57BL , Nocicepción , Condicionamiento Físico Animal , Estimulación Física , Nervio Ciático/lesiones , Nervio Ciático/patología , Nervio Ciático/fisiopatología
9.
J Neurochem ; 128(5): 686-700, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24117625

RESUMEN

The WWC1 gene has been genetically associated with human episodic memory performance, and its product KIdney/BRAin protein (KIBRA) has been shown to interact with the atypical protein kinase protein kinase M ζ (PKMζ). Although recently challenged, PKMζ remains a candidate postsynaptic regulator of memory maintenance. Here, we show that PKMζ is subject to rapid proteasomal degradation and that KIBRA is both necessary and sufficient to counteract this process, thus stabilizing the kinase and maintaining its function for a prolonged time. We define the binding sequence on KIBRA, a short amino acid motif near the C-terminus. Both hippocampal knock-down of KIBRA in rats and KIBRA knock-out in mice result in decreased learning and memory performance in spatial memory tasks supporting the notion that KIBRA is a player in episodic memory. Interestingly, decreased memory performance is accompanied by decreased PKMζ protein levels. We speculate that the stabilization of synaptic PKMζ protein levels by KIBRA may be one mechanism by which KIBRA acts in memory maintenance. KIBRA/WWC1 has been genetically associated with human episodic memory. KIBRA has been shown to be post-synaptically localized, but its function remained obscure. Here, we show that KIBRA shields PKMζ, a kinase previously linked to memory maintenance, from proteasomal degradation via direct interaction. KIBRA levels in the rodent hippocampus correlate closely both to spatial memory performance in rodents and to PKMζ levels. Our findings support a role for KIBRA in memory, and unveil a novel function for this protein.


Asunto(s)
Proteínas Portadoras/fisiología , Proteínas Co-Represoras/fisiología , Aprendizaje/fisiología , Memoria/fisiología , Proteína Quinasa C/fisiología , Secuencia de Aminoácidos , Animales , Reacción de Prevención/fisiología , Conducta Animal/fisiología , Western Blotting , Proteínas Portadoras/metabolismo , Proteínas Co-Represoras/metabolismo , Dependovirus/genética , Prueba de Complementación Genética , Hipocampo/metabolismo , Hipocampo/fisiología , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Datos de Secuencia Molecular , Fosfoproteínas , Reacción en Cadena de la Polimerasa , Unión Proteica , Proteína Quinasa C/metabolismo , Ratas , Ratas Wistar , Técnicas Estereotáxicas
10.
Methods Mol Biol ; 2754: 387-410, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38512678

RESUMEN

A region-specific catheter-based intranasal administration method was successfully developed, established, and validated as reported previously. By using this method, drugs can be applicated specifically to the olfactory region. Thereby, intranasally administered drugs could be delivered via neuronal connections to the central nervous system. Here, we present a detailed protocol with a step-by-step procedure for nose-to-brain delivery via the olfactory mucosa.Fc receptors such as the neonatal Fc receptor (FcRn) and potentially Fcγ receptor IIb (FcγRIIb) are involved in the uptake and transport of antibodies via the olfactory nasal mucosa. To better characterize their expression levels and their role in CNS drug delivery via the nose, an in situ hybridization (ISH) protocol was adapted for nasal mucosa samples and described in abundant details.


Asunto(s)
Encéfalo , Mucosa Nasal , Ratones , Animales , Administración Intranasal , Encéfalo/metabolismo , Preparaciones Farmacéuticas/metabolismo , Anticuerpos/metabolismo , Receptores Fc/genética , Receptores Fc/metabolismo , Hibridación in Situ , Sistemas de Liberación de Medicamentos/métodos
11.
Mol Ther ; 19(2): 284-92, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21139572

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of motoneurons. We have recently uncovered a new neurotrophic growth factor, granulocyte-colony stimulating factor (G-CSF), which protects α-motoneurons, improves functional outcome, and increases life expectancy of SOD-1 (G93A) mice when delivered subcutaneously. However, chronic systemic delivery of G-CSF is complicated by elevation of neutrophilic granulocytes. Here, we used adeno-associated virus (AAV) to directly target and confine G-CSF expression to the spinal cord. Whereas intramuscular injection of AAV failed to transduce motoneurons retrogradely, and caused a high systemic load of G-CSF, intraspinal delivery led to a highly specific enrichment of G-CSF in the spinal cord with moderate peripheral effects. Intraspinal delivery improved motor functions, delayed disease progression, and increased survival by 10%, longer than after systemic delivery. Mechanistically, we could show that G-CSF in addition to rescuing motoneurons improved neuromuscular junction (NMJ) integrity and enhanced motor axon regeneration after nerve crush injury. Collectively, our results show that intraspinal delivery improves efficacy of G-CSF treatment in an ALS mouse model while minimizing the systemic load of G-CSF, suggesting a new therapeutic option for ALS treatment.


Asunto(s)
Esclerosis Amiotrófica Lateral/terapia , Terapia Genética/métodos , Factor Estimulante de Colonias de Granulocitos/fisiología , Esclerosis Amiotrófica Lateral/genética , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos/genética , Factor Estimulante de Colonias de Granulocitos/genética , Inmunohistoquímica , Inyecciones Intramusculares , Inyecciones Espinales , Ratones , Ratones Endogámicos C57BL , Neuronas Motoras/metabolismo , Nervio Ciático/lesiones
12.
J Biomol Tech ; 33(1)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35837001

RESUMEN

Core facilities allow scientists to perform experiments needing specialized technologies in a time- and cost-efficient way. They became increasingly important and now produce a significant amount of research data. Experiments carried out in core facilities are typically shared between the facility staff and the users. However, sharing experiments brings additional challenges to ensure data rigor and reproducibility-for example, in communication, trust, and accountability. We present here an interactive website developed especially for core facilities that offers tools to help them assess, improve, and ensure research quality.


Asunto(s)
Comunicación , Tecnología , Humanos , Reproducibilidad de los Resultados
13.
Front Behav Neurosci ; 16: 838122, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35368297

RESUMEN

Depression affects women nearly twice as frequently as men. In contrast, rodent models of depression have shown inconsistent results regarding sex bias, often reporting more depression-like behaviors in males. This sex discrepancy in rodents modeling depression may rely on differences in the baseline activity of males and females in depression-related behavioral tests. We previously showed that the baseline despair and anhedonia behaviors, major endophenotypes of depression, are not sex biased in young adolescent wild-type mice of C57BL/6N, DBA/2, and FVB/N strains. Since the prevalence of depression in women peaks in their reproductive years, we here investigated sex differences of the baseline depression-like behaviors in adult mice using these three strains. Similar to the results in young mice, no difference was found between adult male and female mice in behavioral tests measuring despair in both tail suspension and forced swim tests, and anhedonia in the sucrose preference test. We then extended our study and tested apathy, another endophenotype of depression, using the splash test. Adult male and female mice showed significantly different results in the baseline apathy-like behaviors depending on the investigated strain. This study dissects the complex sex effects of different depression endophenotypes, stresses the importance of considering strain, and puts forward a hypothesis of the inconsistency of results between different laboratories investigating rodent models of depression.

14.
Front Vet Sci ; 9: 841431, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372532

RESUMEN

The prospective severity assessment in animal experiments in the categories' non-recovery, mild, moderate, and severe is part of each approval process and serves to estimate the harm/benefit. Harms are essential for evaluating ethical justifiability, and on the other hand, they may represent confounders and effect modifiers within an experiment. Catalogs and guidelines provide a way to assess the experimental severity prospectively but are limited in adaptation due to their nature of representing particular examples without clear explanations of the assessment strategies. To provide more flexibility for current and future practices, we developed the modular Where-What-How (WWHow) concept, which applies findings from pre-clinical studies using surgical-induced pain models in mice and rats to provide a prospective severity assessment. The WWHow concept integrates intra-operative characteristics for predicting the maximum expected severity of surgical procedures. The assessed severity categorization is mainly congruent with examples in established catalogs; however, because the WWHow concept is based on anatomical location, detailed analysis of the tissue trauma and other intra-operative characteristics, it enables refinement actions, provides the basis for a fact-based dialogue with authority officials and other stakeholders, and helps to identify confounder factors of study findings.

15.
J Neurochem ; 119(1): 165-75, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21812782

RESUMEN

The stimulation of neurogenesis is an exciting novel therapeutic option for diseases of the central nervous system, ranging from depression to neurodegeneration. One major bottleneck in screening approaches for neurogenesis-inducing compounds is the very demanding in vivo quantification of newborn neurons based on stereological techniques. To effectively develop compounds in this area, novel fast and reliable techniques for quantification of in vivo neurogenesis are needed. In this study, we introduce a flow cytometry-based method for quantifying newly generated neurons in the brain based on the counting of cell nuclei from dissected brain regions. Important steps involve density sedimentation of the cell nuclei, and staining for the proliferation marker bromodeoxy uridine and nuclear cell type markers such as NeuN. We demonstrate the ability of the technique to detect increased neurogenesis in the hippocampus of animals which underwent physical exercise and received fluoxetine treatment.


Asunto(s)
Encéfalo/fisiología , Neurogénesis/fisiología , Animales , Antimetabolitos , Encéfalo/efectos de los fármacos , Bromodesoxiuridina , Recuento de Células , Núcleo Celular/fisiología , Centrifugación por Gradiente de Densidad , Proteínas de Unión al ADN , Citometría de Flujo , Fluoxetina/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/fisiología , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/efectos de los fármacos , Proteínas Nucleares/metabolismo , Reproducibilidad de los Resultados , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
16.
Front Behav Neurosci ; 15: 759574, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34690714

RESUMEN

Depression is a major neuropsychiatric disorder, decreasing the ability of hundreds of millions of individuals worldwide to function in social, academic, and employment settings. Beyond the alarming public health problem, depression leads to morbidity across the entire age including adolescence and adulthood. Modeling depression in rodents has been used to understand the pathophysiological mechanisms behind this disorder and create new therapeutics. Although women are two times more likely to be diagnosed with depression compared to men, behavioral experiments on rodent models of depression are mainly performed in males based on the assumption that the estrous cycles in females may affect the behavioral outcome and cause an increase in the intrinsic variability compared to males. Still, the inclusion of female rodents in the behavioral analysis is mandatory to establish the origin of sex bias in depression. Here, we investigated the baseline depression-like behaviors in male and female mice of three adolescent wild-type inbred strains, C57BL/6N, DBA/2, and FVB/N, that are typically used as background strains for mouse models of neuropsychiatric disorders. Our experiments, performed at two different developmental stages during adolescence (P22-P26 and P32-P36), revealed strain but no sex differences in a set of depression-related tests, including tail suspension, sucrose preference and forced swim tests. Additionally, the 10-day interval during this sensitive period uncovered a strong impact on the behavioral outcome of C57BL/6N and FVB/N mice, highlighting a significant effect of maturation on behavioral patterns. Since anxiety-related behavioral tests are often performed together with depression tests in mouse models of neuropsychiatric disorders, we extended our study and included hyponeophagia as an anxiety test. Consistent with a previous study revealing sex differences in other anxiety tests in adolescent mice, male and females mice behaved differently in the hyponeophagia test at P27. Our study gives insight into the behavioral experiments assessing depression and stresses the importance of considering strain, age and sex when evaluating neuropsychiatric-like traits in rodent models.

17.
Sci Rep ; 11(1): 21372, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34725364

RESUMEN

The automatization of behavioral tests assessing motor activity in rodent models is important for providing robust and reproducible results and evaluating new therapeutics. The CatWalk system is an observer-independent, automated and computerized technique for the assessment of gait performance in rodents. This method has previously been used in adult rodent models of CNS-based movement disorders such as Parkinson's and Huntington's diseases. As motor and gait abnormalities in neuropsychiatric disorders are observed during infancy and adolescence, it became important to validate the CatWalk XT in the gait analysis of adolescent mice and unravel factors that may cause variations in gait performance. Three adolescent wild-type inbred mouse strains, C57BL/6N, DBA/2 and FVB/N, were tested using the CatWalk XT (Version 10.6) for suitable detection settings to characterize several gait parameters at P32 and P42. The same detection settings being suitable for C57BL/6N and DBA/2 mice allowed a direct comparison between the two strains. On the other hand, due to their increased body weight and size, FVB/N mice required different detection settings. The CatWalk XT reliably measured the temporal, spatial, and interlimb coordination parameters in the investigated strains during adolescence. Additionally, significant effects of sex, development, speed and body weight within each strain confirmed the sensitivity of motor and gait functions to these factors. The CatWalk gait analysis of rodents during adolescence, taking the effect of age, strain, sex, speed and body weight into consideration, will decrease intra-laboratory discrepancies and increase the face validity of rodent models of neuropsychiatric disorders.


Asunto(s)
Análisis de la Marcha/métodos , Marcha , Factores de Edad , Animales , Peso Corporal , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Factores Sexuales
18.
Sci Rep ; 11(1): 6497, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33753800

RESUMEN

Neuropsychiatric disorders are often associated with motor and coordination abnormalities that have important implications on the etiology, pathophysiology, and management of these disorders. Although the onset of many neuropsychiatric disorders including autism spectrum disorder, schizophrenia, and attention-deficit hyperactivity disorder emerges mainly during infancy and adolescence, most of the behavioral studies in mice modeling neuropsychiatric phenotypes are performed in adult animals, possibly missing valuable phenotypic information related to the effect of synaptic maturation during development. Here, we examined which behavioral tests assessing both motor and coordination functions can be performed in mice at two different adolescent stages. As strain and sex affect mouse behavior, our experiments covered both male and female mice of three inbred wild-type strains, C57BL/6N, DBA/2, and FVB/N. Adolescent mice of both postnatal days (P)22-30 and P32-40 developmental stages were capable of mastering common motor and coordination tests. However, results differed significantly between strains and sexes. Moreover, the 10-day interval between the two tested cohorts uncovered a strong difference in the behavioral results, confirming the significant impact of maturation on behavioral patterns. Interestingly, the results of distinct behavioral experiments were directly correlated with the weight of mice, which may explain the lack of reproducibility of some behavioral results in genetically-modified mice. Our study paves the way for better reproducibility of behavioral tests by addressing the effect of the developmental stage, strain, sex, and weight of mice on achieving the face validity of neuropsychiatric disorder-associated motor dysfunctions.


Asunto(s)
Variación Biológica Poblacional , Modelos Animales de Enfermedad , Movimiento , Enfermedades del Sistema Nervioso/genética , Animales , Femenino , Genotipo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Enfermedades del Sistema Nervioso/fisiopatología , Reproducibilidad de los Resultados
19.
Front Pharmacol ; 12: 789780, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35082672

RESUMEN

We have recently developed a region-specific catheter-based intranasal application method in mice by using CT scan-based 3D cast models of the murine nose (DOI: 10.2376/0005-9366-17,102). This technique is able to specifically deliver drugs to the olfactory region or to the respiratory region only. Thereby, intranasally administered drugs could be delivered either via neuronal connections to the central nervous system or via the well-perfused rostral parts of the nasal mucosa to the systemic circulation. In the present study, we transferred successfully this novel delivery technique to C57Bl/6 mice and determined parameters such as insertions depth of the catheter and maximum delivery volume in dependence to the weight of the mouse. Breathing was simulated to verify that the volume remains at the targeted area. A step-by-step procedure including a video is presented to adopt this technique for standardized and reproducible intranasal central nervous system (CNS) delivery studies (DOI : 10.3390/ pharmaceutics13111904).

20.
Pharmaceutics ; 13(11)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34834319

RESUMEN

Intranasal drug delivery is a promising approach for the delivery of drugs to the CNS, but too heterogenous, unprecise delivery methods without standardization decrease the quality of many studies in rodents. Thus, the lack of a precise and region-specific application technique for mice is a major drawback. In this study, a previously developed catheter-based refined technique was validated against the conventional pipette-based method and used to specifically reach the olfactory or the respiratory nasal regions. This study successfully demonstrated region-specific administration at the olfactory mucosa resulting in over 20% of the administered fluorescein dose in the olfactory bulbs, and no peripheral bioactivity of insulin detemir and Fc-dependent uptake of two murine IgG1 (11C7 and P3X) along the olfactory pathway to cortex and hippocampus. An scFv of 11C7 showed hardly any uptake to the CNS. Elimination was dependent on the presence of the IgG's antigen. In summary, it was successfully demonstrated that region-specific intranasal administration via the olfactory region resulted in improved brain targeting and reduced peripheral targeting in mice. The data are discussed with regard to their clinical potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA