Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Glob Chang Biol ; 2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33368899

RESUMEN

Climate change has resulted in physical and biological changes in the world's oceans. How the effects of these changes are buffered by top predator populations, and therefore how much plasticity lies at the highest trophic levels, are largely unknown. Here endocrine profiling, longitudinal observations of known individuals over 15 years between 2004 and 2018, and environmental data are combined to examine how the reproductive success of a top marine predator is being affected by ecosystem change. The Gulf of St. Lawrence, Canada, is a major summer feeding ground for humpback whales (Megaptera novaeangliae) in the North Atlantic. Blubber biopsy samples (n = 185) of female humpback whales were used to investigate variation in pregnancy rates through the quantification of progesterone. Annual pregnancy rates showed considerable variability, with no overall change detected over the study. However, a total of 457 photo-identified adult female sightings records with/without calves were collated, and showed that annual calving rates declined significantly. The probability of observing cow-calf pairs was related to favourable environmental conditions in the previous year; measured by herring spawning stock biomass, Calanus spp. abundance, overall copepod abundance and phytoplankton bloom magnitude. Approximately 39% of identified pregnancies were unsuccessful over the 15 years, and the average annual pregnancy rate was higher than the average annual calving rate at ~37% and ~23% respectively. Together, these data suggest that the declines in reproductive success could be, at least in part, the result of females being unable to accumulate the energy reserves necessary to maintain pregnancy and/or meet the energetic demands of lactation in years of poorer prey availability rather than solely an inability to become pregnant. The decline in calving rates over a period of major environmental variability may suggest that this population has limited resilience to such ecosystem change.

2.
J Plankton Res ; 46(1): 25-40, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38486837

RESUMEN

Copepod size and energy content are influenced by regional and seasonal variation in temperature and food conditions, with implications for planktivorous consumers such as the endangered North Atlantic right whale (Eubalaena glacialis). Historical data (1990-2020) on Calanus finmarchicus stage CV copepodite prosome length and oil sac metrics were analyzed to determine the extent of variation in individual body size and estimated lipid and energy content in five regions of the Northwest Atlantic continental shelves [Gulf of Maine (GoM), Scotian Shelf (SS), Gulf of St. Lawrence (GSL), St. Lawrence Estuary (SLE) and Newfoundland Shelf]. Large-scale spatial patterns in size and lipid content were related to latitude, indicating that C. finmarchicus CV in the GSL and SLE were historically larger in body size, and had significantly higher lipid content compared with those in the GoM and the SS. The observed patterns of C. finmarchicus CV size and lipid storage capacity suggest that regional variation in whale prey energy content can play a role in the suitability of current and future whale foraging habitats in the Northwest Atlantic, with the larger lipid-rich individuals in the GSL providing a high-quality diet compared with those in southern areas.

3.
Mar Pollut Bull ; 173(Pt B): 113096, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34744013

RESUMEN

Decades after a ban on hunting, and despite focused management interventions, the endangered St. Lawrence Estuary (SLE) beluga (Delphinapterus leucas) population has failed to recover. We applied a population viability analysis to simulate the responses of the SLE beluga population across a wide range of variability and uncertainty under current and projected changes in environmental and climate-mediated conditions. Three proximate threats to recovery were explored: ocean noise; contaminants; and prey limitation. Even the most optimistic scenarios failed to achieve the reliable positive population growth needed to meet current recovery targets. Here we show that predicted effects of climate change may be a more significant driver of SLE beluga population dynamics than the proximate threats we considered. Aggressive mitigation of all three proximate threats will be needed to build the population's resilience and allow the population to persist long enough for global actions to mitigate climate change to take effect.


Asunto(s)
Ballena Beluga , Cambio Climático , Conservación de los Recursos Naturales , Estuarios , Animales , Especies en Peligro de Extinción , Caza
4.
Sci Rep ; 10(1): 16064, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32999410

RESUMEN

Recruitment is one of the dominant processes regulating fish population productivity. It is, however, notoriously difficult to predict, as it is the result of a complex multi-step process. Various fine-scale drivers might act on the pathway from adult population characteristics to spawning behaviour and egg production, and then to recruitment. Here, we provide a holistic analysis of the Northwest Atlantic mackerel recruitment process from 1982 to 2017 and exemplify why broad-scale recruitment-environment relationships could become unstable over time. Various demographic and environmental drivers had a synergetic effect on recruitment, but larval survival through a spatio-temporal match with prey was shown to be the key process. Recruitment was also mediated by maternal effects and a parent-offspring fitness trade-off due to the different feeding regimes of adults and larvae. A mismatch curtails the effects of high larval prey densities, so that despite the abundance of food in recent years, recruitment was relatively low and the pre-existing relationship with overall prey abundance broke down. Our results reaffirm major recruitment hypotheses and demonstrate the importance of fine-scale processes along the recruitment pathway, helping to improve recruitment predictions and potentially fisheries management.


Asunto(s)
Explotaciones Pesqueras , Peces , Animales , Océano Atlántico , Canadá , Femenino , Explotaciones Pesqueras/historia , Explotaciones Pesqueras/organización & administración , Explotaciones Pesqueras/estadística & datos numéricos , Peces/crecimiento & desarrollo , Peces/fisiología , Cadena Alimentaria , Historia del Siglo XX , Historia del Siglo XXI , Larva/crecimiento & desarrollo , Masculino , Modelos Biológicos , Perciformes/crecimiento & desarrollo , Perciformes/fisiología , Dinámica Poblacional/historia , Reproducción/fisiología
5.
PLoS One ; 11(6): e0156411, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27249793

RESUMEN

Mussel aquaculture has expanded worldwide and it is important to assess its impact on the water column and the planktonic food web to determine the sustainability of farming practices. Mussel farming may affect the planktonic food web indirectly by excreting bioavailable nutrients in the water column (a short-term effect) or by increasing nutrient effluxes from biodeposit-enriched sediments (a long-term effect). We tested both of these indirect effects in a lagoon by using plankton-enclosing benthocosms that were placed on the bottom of a shallow lagoon either inside of a mussel farm or at reference sites with no history of aquaculture. At each site, half of the benthocosms were enriched with seawater that had held mussels (excretion treatment), the other half received non-enriched seawater as a control treatment. We monitored nutrients ([PO43-] and [NH4+]), dissolved oxygen and plankton components (bacteria, the phytoplankton and the zooplankton) over 5 days. We found a significant relationship between long-term accumulation of mussel biodeposits in sediments, water-column nutrient concentrations and plankton growth. Effects of mussel excretion were not detected, too weak to be significant given the spatial and temporal variability observed in the lagoon. Effects of mussels on the water column are thus likely to be coupled to benthic processes in such semi-enclosed water bodies.


Asunto(s)
Acuicultura , Bivalvos/fisiología , Plancton/fisiología , Animales , Cadena Alimentaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA