RESUMEN
Multisystem inflammatory syndrome in children (MIS-C) is a severe, post-infectious sequela of SARS-CoV-2 infection1,2, yet the pathophysiological mechanism connecting the infection to the broad inflammatory syndrome remains unknown. Here we leveraged a large set of samples from patients with MIS-C to identify a distinct set of host proteins targeted by patient autoantibodies including a particular autoreactive epitope within SNX8, a protein involved in regulating an antiviral pathway associated with MIS-C pathogenesis. In parallel, we also probed antibody responses from patients with MIS-C to the complete SARS-CoV-2 proteome and found enriched reactivity against a distinct domain of the SARS-CoV-2 nucleocapsid protein. The immunogenic regions of the viral nucleocapsid and host SNX8 proteins bear remarkable sequence similarity. Consequently, we found that many children with anti-SNX8 autoantibodies also have cross-reactive T cells engaging both the SNX8 and the SARS-CoV-2 nucleocapsid protein epitopes. Together, these findings suggest that patients with MIS-C develop a characteristic immune response to the SARS-CoV-2 nucleocapsid protein that is associated with cross-reactivity to the self-protein SNX8, demonstrating a mechanistic link between the infection and the inflammatory syndrome, with implications for better understanding a range of post-infectious autoinflammatory diseases.
Asunto(s)
Anticuerpos Antivirales , Autoanticuerpos , COVID-19 , Reacciones Cruzadas , Epítopos , Imitación Molecular , SARS-CoV-2 , Síndrome de Respuesta Inflamatoria Sistémica , Niño , Humanos , Anticuerpos Antivirales/inmunología , Autoanticuerpos/inmunología , Proteínas de la Nucleocápside de Coronavirus/química , Proteínas de la Nucleocápside de Coronavirus/inmunología , COVID-19/inmunología , COVID-19/virología , COVID-19/complicaciones , Reacciones Cruzadas/inmunología , Epítopos/inmunología , Epítopos/química , Imitación Molecular/inmunología , Fosfoproteínas/química , Fosfoproteínas/inmunología , SARS-CoV-2/química , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Nexinas de Clasificación/química , Nexinas de Clasificación/inmunología , Síndrome de Respuesta Inflamatoria Sistémica/inmunología , Síndrome de Respuesta Inflamatoria Sistémica/patología , Síndrome de Respuesta Inflamatoria Sistémica/virología , Linfocitos T/inmunologíaRESUMEN
The Siglecs (sialic acid-binding immunoglobulin-like lectins) are glycoimmune checkpoint receptors that suppress immune cell activation upon engagement of cognate sialoglycan ligands. The cellular drivers underlying Siglec ligand production on cancer cells are poorly understood. We find the MYC oncogene causally regulates Siglec ligand production to enable tumor immune evasion. A combination of glycomics and RNA-sequencing of mouse tumors revealed the MYC oncogene controls expression of the sialyltransferase St6galnac4 and induces a glycan known as disialyl-T. Using in vivo models and primary human leukemias, we find that disialyl-T functions as a "don't eat me" signal by engaging macrophage Siglec-E in mice or the human ortholog Siglec-7, thereby preventing cancer cell clearance. Combined high expression of MYC and ST6GALNAC4 identifies patients with high-risk cancers and reduced tumor myeloid infiltration. MYC therefore regulates glycosylation to enable tumor immune evasion. We conclude that disialyl-T is a glycoimmune checkpoint ligand. Thus, disialyl-T is a candidate for antibody-based checkpoint blockade, and the disialyl-T synthase ST6GALNAC4 is a potential enzyme target for small molecule-mediated immune therapy.
Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas c-myc , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Animales , Humanos , Ratones , Antígenos CD/metabolismo , Ligandos , Macrófagos/metabolismo , Neoplasias/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismoRESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
A rapidly ageing population and a limited therapeutic toolbox urgently necessitate new approaches to treat neurodegenerative diseases. Brain ageing, the key risk factor for neurodegeneration, involves complex cellular and molecular processes that eventually result in cognitive decline. Although cell-intrinsic defects in neurons and glia may partially explain this decline, cell-extrinsic changes in the systemic environment, mediated by blood, have recently been shown to contribute to brain dysfunction with age. Here, we review the current understanding of how systemic factors mediate brain ageing, how these factors are regulated and how we can translate these findings into therapies for neurodegenerative diseases.
Asunto(s)
Envejecimiento/fisiología , Encéfalo/fisiología , Homeostasis , Enfermedades Neurodegenerativas/fisiopatología , Envejecimiento/inmunología , Animales , Encéfalo/inmunología , Células Endoteliales/inmunología , Células Endoteliales/fisiología , Ejercicio Físico/fisiología , Humanos , Microbiota/inmunología , Microbiota/fisiología , Enfermedades Neurodegenerativas/inmunología , Neuroglía/inmunología , Neuroglía/fisiología , Neuronas/inmunología , Neuronas/fisiologíaRESUMEN
Microglia maintain homeostasis in the central nervous system through phagocytic clearance of protein aggregates and cellular debris. This function deteriorates during ageing and neurodegenerative disease, concomitant with cognitive decline. However, the mechanisms of impaired microglial homeostatic function and the cognitive effects of restoring this function remain unknown. We combined CRISPR-Cas9 knockout screens with RNA sequencing analysis to discover age-related genetic modifiers of microglial phagocytosis. These screens identified CD22, a canonical B cell receptor, as a negative regulator of phagocytosis that is upregulated on aged microglia. CD22 mediates the anti-phagocytic effect of α2,6-linked sialic acid, and inhibition of CD22 promotes the clearance of myelin debris, amyloid-ß oligomers and α-synuclein fibrils in vivo. Long-term central nervous system delivery of an antibody that blocks CD22 function reprograms microglia towards a homeostatic transcriptional state and improves cognitive function in aged mice. These findings elucidate a mechanism of age-related microglial impairment and a strategy to restore homeostasis in the ageing brain.
Asunto(s)
Envejecimiento/fisiología , Encéfalo/citología , Homeostasis/efectos de los fármacos , Microglía/efectos de los fármacos , Ácido N-Acetilneuramínico/farmacología , Fagocitosis/efectos de los fármacos , Lectina 2 Similar a Ig de Unión al Ácido Siálico/antagonistas & inhibidores , Envejecimiento/efectos de los fármacos , Envejecimiento/genética , Animales , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Cognición/efectos de los fármacos , Cognición/fisiología , Femenino , Homeostasis/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/citología , Ácido N-Acetilneuramínico/química , Fagocitosis/genética , Análisis de Secuencia de ARN , Lectina 2 Similar a Ig de Unión al Ácido Siálico/genética , Lectina 2 Similar a Ig de Unión al Ácido Siálico/metabolismoRESUMEN
The mammalian brain contains neurogenic niches that comprise neural stem cells and other cell types. Neurogenic niches become less functional with age, but how they change during ageing remains unclear. Here we perform single-cell RNA sequencing of young and old neurogenic niches in mice. The analysis of 14,685 single-cell transcriptomes reveals a decrease in activated neural stem cells, changes in endothelial cells and microglia, and an infiltration of T cells in old neurogenic niches. T cells in old brains are clonally expanded and are generally distinct from those in old blood, which suggests that they may experience specific antigens. T cells in old brains also express interferon-γ, and the subset of neural stem cells that has a high interferon response shows decreased proliferation in vivo. We find that T cells can inhibit the proliferation of neural stem cells in co-cultures and in vivo, in part by secreting interferon-γ. Our study reveals an interaction between T cells and neural stem cells in old brains, opening potential avenues through which to counteract age-related decline in brain function.
Asunto(s)
Envejecimiento/fisiología , Encéfalo/citología , Movimiento Celular , Células-Madre Neurales/citología , Neurogénesis , Análisis de la Célula Individual , Nicho de Células Madre/fisiología , Linfocitos T/citología , Animales , Sangre , Proliferación Celular , Células Clonales/citología , Técnicas de Cocultivo , Células Endoteliales/citología , Interferón gamma/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/citología , Análisis de Secuencia de ARN , Transducción de Señal , Linfocitos T/metabolismo , Transcriptoma/genéticaRESUMEN
Healthy bone marrow progenitors yield a co-ordinated balance of hematopoietic lineages. This balance shifts with aging toward enhanced granulopoiesis with diminished erythropoiesis and lymphopoiesis, changes which likely contribute to the development of bone marrow disorders in the elderly. In this study, RUNX3 was identified as a hematopoietic stem and progenitor cell factor whose levels decline with aging in humans and mice. This decline is exaggerated in hematopoietic stem and progenitor cells from subjects diagnosed with unexplained anemia of the elderly. Hematopoietic stem cells from elderly unexplained anemia patients had diminished erythroid but unaffected granulocytic colony forming potential. Knockdown studies revealed human hematopoietic stem and progenitor cells to be strongly influenced by RUNX3 levels, with modest deficiencies abrogating erythroid differentiation at multiple steps while retaining capacity for granulopoiesis. Transcriptome profiling indicated control by RUNX3 of key erythroid transcription factors, including KLF1 and GATA1 These findings thus implicate RUNX3 as a participant in hematopoietic stem and progenitor cell aging, and a key determinant of erythroid-myeloid lineage balance.
Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Anciano , Envejecimiento , Animales , Diferenciación Celular , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Eritropoyesis , Humanos , RatonesRESUMEN
Determining the developmental pathway leading to erythrocytes and being able to isolate their progenitors are crucial to understanding and treating disorders of red cell imbalance such as anemia, myelodysplastic syndrome, and polycythemia vera. Here we show that the human erythrocyte progenitor (hEP) can be prospectively isolated from adult bone marrow. We found three subfractions that possessed different expression patterns of CD105 and CD71 within the previously defined human megakaryocyte/erythrocyte progenitor (hMEP; Lineage(-) CD34(+) CD38(+) IL-3Rα(-) CD45RA(-)) population. Both CD71(-) CD105(-) and CD71(+) CD105(-) MEPs, at least in vitro, still retained bipotency for the megakaryocyte (MegK) and erythrocyte (E) lineages, although the latter subpopulation is skewed in differentiation toward the erythroid lineage. Notably, the proliferative and differentiation output of the CD71(intermediate(int)/+) CD105(+) subset of cells within the MEP population was completely restricted to the erythroid lineage with the loss of MegK potential. CD71(+) CD105(-) MEPs are erythrocyte-biased MEPs (E-MEPs) and CD71(int/+) CD105(+) cells are EPs. These previously unclassified populations may facilitate further understanding of the molecular mechanisms governing human erythroid development and serve as potential therapeutic targets in disorders of the erythroid lineage.
Asunto(s)
Linaje de la Célula , Separación Celular/métodos , Células Precursoras Eritroides/citología , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Fraccionamiento Celular , Linaje de la Célula/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Células Precursoras Eritroides/efectos de los fármacos , Citometría de Flujo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inmunofenotipificación , Megacariocitos/citología , Megacariocitos/efectos de los fármacos , Modelos Biológicos , Factor de Crecimiento Transformador beta/farmacología , Regulación hacia Arriba/efectos de los fármacosRESUMEN
Myelodysplastic syndromes (MDS) are a group of disorders characterized by variable cytopenias and ineffective hematopoiesis. Hematopoietic stem cells (HSCs) and myeloid progenitors in MDS have not been extensively characterized. We transplanted purified human HSCs from MDS samples into immunodeficient mice and show that HSCs are the disease-initiating cells in MDS. We identify a recurrent loss of granulocyte-macrophage progenitors (GMPs) in the bone marrow of low risk MDS patients that can distinguish low risk MDS from clinical mimics, thus providing a simple diagnostic tool. The loss of GMPs is likely due to increased apoptosis and increased phagocytosis, the latter due to the up-regulation of cell surface calreticulin, a prophagocytic marker. Blocking calreticulin on low risk MDS myeloid progenitors rescues them from phagocytosis in vitro. However, in the high-risk refractory anemia with excess blasts (RAEB) stages of MDS, the GMP population is increased in frequency compared with normal, and myeloid progenitors evade phagocytosis due to up-regulation of CD47, an antiphagocytic marker. Blocking CD47 leads to the selective phagocytosis of this population. We propose that MDS HSCs compete with normal HSCs in the patients by increasing their frequency at the expense of normal hematopoiesis, that the loss of MDS myeloid progenitors by programmed cell death and programmed cell removal are, in part, responsible for the cytopenias, and that up-regulation of the "don't eat me" signal CD47 on MDS myeloid progenitors is an important transition step leading from low risk MDS to high risk MDS and, possibly, to acute myeloid leukemia.
Asunto(s)
Células Madre Hematopoyéticas/patología , Síndromes Mielodisplásicos/patología , Animales , Antígenos CD/inmunología , Células Madre Hematopoyéticas/inmunología , Humanos , Hibridación Fluorescente in Situ , Ratones , Síndromes Mielodisplásicos/inmunología , FagocitosisRESUMEN
Vitamin B12 is critical for hematopoiesis and myelination. Deficiency can cause neurologic deficits including loss of coordination and cognitive decline. However, diagnosis relies on measurement of vitamin B12 in the blood, which may not accurately reflect the concentration in the brain. Using programmable phage display, we identified an autoantibody targeting the transcobalamin receptor (CD320) in a patient with progressive tremor, ataxia, and scanning speech. Anti-CD320 impaired cellular uptake of cobalamin (B12) in vitro by depleting its target from the cell surface. Despite a normal serum concentration, B12 was nearly undetectable in her cerebrospinal fluid (CSF). Immunosuppressive treatment and high-dose systemic B12 supplementation were associated with increased B12 in the CSF and clinical improvement. Optofluidic screening enabled isolation of a patient-derived monoclonal antibody that impaired B12 transport across an in vitro model of the blood-brain barrier (BBB). Autoantibodies targeting the same epitope of CD320 were identified in seven other patients with neurologic deficits of unknown etiology, 6% of healthy controls, and 21.4% of a cohort of patients with neuropsychiatric lupus. In 132 paired serum and CSF samples, detection of anti-CD320 in the blood predicted B12 deficiency in the brain. However, these individuals did not display any hematologic signs of B12 deficiency despite systemic CD320 impairment. Using a genome-wide CRISPR screen, we found that the low-density lipoprotein receptor serves as an alternative B12 uptake pathway in hematopoietic cells. These findings dissect the tissue specificity of B12 transport and elucidate an autoimmune neurologic condition that may be amenable to immunomodulatory treatment and nutritional supplementation.
Asunto(s)
Autoanticuerpos , Deficiencia de Vitamina B 12 , Vitamina B 12 , Humanos , Deficiencia de Vitamina B 12/inmunología , Vitamina B 12/sangre , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Femenino , Receptores de Superficie Celular/metabolismo , Antígenos CD/metabolismo , Persona de Mediana Edad , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/sangre , Barrera Hematoencefálica/metabolismo , MasculinoRESUMEN
Reduced gene dosage of ribosomal protein subunits has been implicated in 5q- myelodysplastic syndrome and Diamond Blackfan anemia, but the cellular and pathophysiologic defects associated with these conditions are enigmatic. Using conditional inactivation of the ribosomal protein S6 gene in laboratory mice, we found that reduced ribosomal protein gene dosage recapitulates cardinal features of the 5q- syndrome, including macrocytic anemia, erythroid hypoplasia, and megakaryocytic dysplasia with thrombocytosis, and that p53 plays a critical role in manifestation of these phenotypes. The blood cell abnormalities are accompanied by a reduction in the number of HSCs, a specific defect in late erythrocyte development, and suggest a disease-specific ontogenetic pathway for megakaryocyte development. Further studies of highly purified HSCs from healthy patients and from those with myelodysplastic syndrome link reduced expression of ribosomal protein genes to decreased RBC maturation and suggest an underlying and common pathophysiologic pathway for additional subtypes of myelodysplastic syndrome.
Asunto(s)
Dosificación de Gen , Síndromes Mielodisplásicos/genética , Proteínas Ribosómicas/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Regulación hacia Abajo/genética , Femenino , Dosificación de Gen/genética , Dosificación de Gen/fisiología , Predisposición Genética a la Enfermedad , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Síndromes Mielodisplásicos/etiología , Síndromes Mielodisplásicos/metabolismo , Proteínas Ribosómicas/metabolismo , Factores de Riesgo , Proteína p53 Supresora de Tumor/fisiologíaRESUMEN
Lysosome dysfunction is a shared feature of rare lysosomal storage diseases and common age-related neurodegenerative diseases. Microglia, the brain-resident macrophages, are particularly vulnerable to lysosome dysfunction because of the phagocytic stress of clearing dying neurons, myelin, and debris. CD22 is a negative regulator of microglial homeostasis in the aging mouse brain, and soluble CD22 (sCD22) is increased in the cerebrospinal fluid of patients with Niemann-Pick type C disease (NPC). However, the role of CD22 in the human brain remains unknown. In contrast to previous findings in mice, here, we show that CD22 is expressed by oligodendrocytes in the human brain and binds to sialic aciddependent ligands on microglia. Using unbiased genetic and proteomic screens, we identify insulin-like growth factor 2 receptor (IGF2R) as the binding partner of sCD22 on human myeloid cells. Targeted truncation of IGF2R revealed that sCD22 docks near critical mannose 6-phosphatebinding domains, where it disrupts lysosomal protein trafficking. Interfering with the sCD22-IGF2R interaction using CD22 blocking antibodies ameliorated lysosome dysfunction in human NPC1 mutant induced pluripotent stem cellderived microglia-like cells without harming oligodendrocytes in vitro. These findings reinforce the differences between mouse and human microglia and provide a candidate microglia-directed immunotherapeutic to treat NPC.
Asunto(s)
Microglía , Enfermedad de Niemann-Pick Tipo C , Animales , Humanos , Lisosomas/metabolismo , Macrófagos/metabolismo , Ratones , Microglía/metabolismo , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Proteómica , Lectina 2 Similar a Ig de Unión al Ácido Siálico/metabolismo , Lectina 2 Similar a Ig de Unión al Ácido Siálico/uso terapéuticoRESUMEN
Microglia become progressively activated and seemingly dysfunctional with age, and genetic studies have linked these cells to the pathogenesis of a growing number of neurodegenerative diseases. Here we report a striking buildup of lipid droplets in microglia with aging in mouse and human brains. These cells, which we call 'lipid-droplet-accumulating microglia' (LDAM), are defective in phagocytosis, produce high levels of reactive oxygen species and secrete proinflammatory cytokines. RNA-sequencing analysis of LDAM revealed a transcriptional profile driven by innate inflammation that is distinct from previously reported microglial states. An unbiased CRISPR-Cas9 screen identified genetic modifiers of lipid droplet formation; surprisingly, variants of several of these genes, including progranulin (GRN), are causes of autosomal-dominant forms of human neurodegenerative diseases. We therefore propose that LDAM contribute to age-related and genetic forms of neurodegeneration.
Asunto(s)
Envejecimiento/patología , Encéfalo/patología , Lípidos , Microglía/patología , Animales , Humanos , Inflamación/patología , RatonesRESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
In this issue of Neuron, Tufail et al. present an underlying mechanism for microglia-mediated elimination of virally transduced cells in the central nervous system. These findings could contribute to the development of improved gene therapies for various neurological disorders by exploring why microglia destroy viable cells following viral infection.