Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 509(3): 790-796, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30612734

RESUMEN

Telomerase activity is regulated at the mRNA level by alternative splicing (AS) of its catalytic subunit hTERT. The aim of this study was to define the ability of splice-switching oligonucleotides (SSOs) that pair with hTERT pre-mRNA to induce AS and inhibit telomerase activity in human CD4+ T lymphocytes. SSOs that blocked the binding of a single splicing regulatory protein, SRp20 or SRp40, to its site within intron 8 of hTERT pre-mRNA demonstrated rather moderate capacities to induce AS and inhibit telomerase. However, a SSO that blocked the interaction of both SRp20 and SRp40 proteins with pre-mRNA was the most active. Cultivation of lymphocytes with spliced hTERT and inhibited telomerase resulted in the reduction of proliferative activity without significant induction of cell death. These results should facilitate further investigation of telomerase activity regulation, and antitelomerase SSOs could become promising agents for antiproliferative cell therapy.


Asunto(s)
Empalme Alternativo/efectos de los fármacos , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/efectos de los fármacos , Oligonucleótidos/farmacología , ARN Mensajero/genética , Telomerasa/genética , Adulto , Linfocitos T CD4-Positivos/metabolismo , Dominio Catalítico/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Oligonucleótidos/administración & dosificación , Oligonucleótidos/genética , Telomerasa/química , Transfección
3.
Biomedicines ; 9(5)2021 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-34065134

RESUMEN

Alternative splicing (AS) of human telomerase catalytic subunit (hTERT, human telomerase reverse transcriptase) pre-mRNA strongly regulates telomerase activity. Several proteins can regulate AS in a cell type-specific manner and determine the functions of cells. In addition to being involved in telomerase activity regulation, AS provides cells with different splice variants that may have alternative biological activities. The modulation of telomerase activity through the induction of hTERT AS is involved in the development of different cancer types and embryos, and the differentiation of stem cells. Regulatory T cells may suppress the proliferation of target human and murine T and B lymphocytes and NK cells in a contact-independent manner involving activation of TERT AS. This review focuses on the mechanism of regulation of hTERT pre-mRNA AS and the involvement of splice variants in physiological and pathological processes.

4.
J Med Chem ; 64(15): 11432-11444, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34283610

RESUMEN

Human (h) telomerase (TL; EC 2.7.7.49) plays a key role in sustaining cancer cells by means of elongating telomeric repeats at the 3' ends of chromosomes. Since TL-inhibitor (TI) stand-alone cancer therapy has been proven to be remarkably challenging, a polypharmacological approach represents a valid alternative. Here we consider a series of compounds able to inhibit both hTL and the tumor-associated carbonic anhydrases (CAs; EC 4.2.1.1) IX and XII. Compounds 7 and 9 suppressed hTL activity in both cell lysates and human colon cancer cell lines, and prolonged incubation with either 7 or 9 resulted in telomere shortening, cell cycle arrest, replicative senescence, and apoptosis. Enzyme kinetics showed that 7 and 9 are mixed-type inhibitors of the binding of DNA primers and deoxynucleoside triphosphate (dNTP) to the TL catalytic subunit hTERT, which is in agreement with docking experiments. Compound 9 showed antitumor activity in Colo-205 mouse xenografts and suppressed telomerase activity by telomere reduction.


Asunto(s)
Antineoplásicos/farmacología , Anhidrasas Carbónicas/metabolismo , Inhibidores Enzimáticos/farmacología , Sulfonamidas/farmacología , Telomerasa/antagonistas & inhibidores , Zidovudina/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Relación Estructura-Actividad , Sulfonamidas/química , Telomerasa/metabolismo , Células Tumorales Cultivadas , Zidovudina/química
5.
Biochimie ; 174: 34-43, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32315661

RESUMEN

The nuclease activity of deoxyribonuclease 1 (DNase I) is regulated by alternative splicing (AS) of its mRNA. The aim of this study was to define the ability of a splice-switching oligonucleotide (SSO) that base-paired with DNase I pre-mRNA to induce AS and inhibit nuclease activity in human T, B and NK lymphocytes. The SSO for DNase I could significantly downregulate the expression of full-length active DNase I and upregulate a truncated splice variant with a deleted exon 4. Such an induction of AS resulted in inhibition of nuclease activity and slowed apoptosis progression in anti-CD95/FAS stimulated lymphocytes. These results should facilitate further investigations of apoptosis regulation in lymphocytes and demonstrate that SSOs for DNase I are promising cytoprotective agents.


Asunto(s)
Apoptosis , Desoxirribonucleasa I/antagonistas & inhibidores , Linfocitos/citología , Oligonucleótidos/farmacología , Adolescente , Adulto , Empalme Alternativo , Supervivencia Celular , Desoxirribonucleasa I/metabolismo , Voluntarios Sanos , Humanos , Linfocitos/enzimología , Precursores del ARN/metabolismo , ARN Mensajero/metabolismo , Adulto Joven
6.
Pharmaceuticals (Basel) ; 13(10)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33008089

RESUMEN

The anticancer effect of L-asparaginases (L-ASNases) is attributable to their ability to hydrolyze L-asparagine in the bloodstream and cancer cell microenvironment. Rhodospirillum rubrum (RrA) has dual mechanism of action and plays a role in the suppression of telomerase activity. The aim of this work was to investigate the possible mechanism of RrA penetration into human cancer cells. Labeling of widely used L-ASNases by fluorescein isothiocyanate followed by flow cytometry and fluorescent microscopy demonstrated that only RrA can interact with cell membranes. The screening of inhibitors of receptor-mediated endocytosis demonstrated the involvement of clathrin receptors in RrA penetration into cells. Confocal microscopy confirmed the cytoplasmic and nuclear localization of RrA in human breast cancer SKBR3 cells. Two predicted nuclear localization motifs allow RrA to penetrate into the cell nucleus and inhibit telomerase. Chromatin relaxation promoted by different agents can increase the ability of RrA to suppress the expression of telomerase main catalytic subunit. Our study demonstrated for the first time the ability of RrA to penetrate into human cancer cells and the involvement of clathrin receptors in this process.

7.
Biochimie ; 157: 158-176, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30521874

RESUMEN

Apoptotic endonucleases act cooperatively to fragment DNA and ensure the irreversibility of apoptosis. However, very little is known regarding the potential regulatory links between endonucleases. Deoxyribonuclease 1 (DNase I) inactivation is caused by alternative splicing (AS) of DNase I pre-mRNA skipping exon 4, which occurs in response to EndoG overexpression in cells. The current study aimed to determine the role of EndoG in the regulation of DNase I mRNA AS and the modulation of its enzymatic activity. A strong correlation was identified between the EndoG expression levels and DNase I splice variants in human lymphocytes. EndoG overexpression in CD4+ T cells down-regulated the mRNA levels of the active full-length DNase I variant and up-regulated the levels of the non-active spliced variant, which acts in a dominant-negative fashion. DNase I AS was induced by the translocation of EndoG from mitochondria into nuclei during the development of apoptosis. The DNase I spliced variant was induced by recombinant EndoG or by incubation with EndoG-digested cellular RNA in an in vitro system with isolated cell nuclei. Using antisense DNA oligonucleotides, we identified a 72-base segment that spans the adjacent segments of exon 4 and intron 4 and appears to be responsible for the AS. DNase I-positive CD4+ T cells overexpressing EndoG demonstrated decreased progression towards bleomycin-induced apoptosis. Therefore, EndoG is an endonuclease with the unique ability to inactivate another endonuclease, DNase I, and to modulate the development of apoptosis.


Asunto(s)
Empalme Alternativo/fisiología , Apoptosis/fisiología , Linfocitos T CD4-Positivos/enzimología , Desoxirribonucleasa I/biosíntesis , Endodesoxirribonucleasas/metabolismo , ARN Mensajero/metabolismo , Adolescente , Adulto , Linfocitos T CD4-Positivos/citología , Desoxirribonucleasa I/genética , Endodesoxirribonucleasas/genética , Femenino , Humanos , Masculino , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA