Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Photochem Photobiol Sci ; 18(6): 1526-1532, 2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-30984955

RESUMEN

The large standard reduction potential of an aqueous solvated electron (eaq-, E° = -2.9 V) makes it an attractive candidate for reductive treatment of wastewater contaminants. Using transient absorption spectroscopy, the nanosecond to microsecond dynamics of eaq- generated from 10 mM solutions of Na2SO3 at pH 4 to 11 in H2O and D2O are characterized, resulting in the determination that between pH 4 and 9 it is the HSO3-, and not H+ as previously postulated by others, that effectively quenches eaq-. The observed bimolecular quenching rate constant (k = 1.2 × 108 M-1 s-1) for eaq- deactivation by HSO3- is found to be consistent with a Brønsted acid catalysis mechanism resulting in formation of H˙ and SO32-. A large solvent isotope effect is observed from the lifetimes of the eaq- in H2O compared to D2O (kH2O/kD2O = 4.4). In addition, the bimolecular rate constant for eaq- deactivation by DSO3- (k = 2.7 × 107 M-1 s-1) is found to be an order of magnitude lower than by HSO3-. These results highlight the role of acids, such as HSO3-, in competition with organic contaminant targets for eaq- and, by extension, that knowledge of the pKa of eaq- sources can be a predictive measure of the effective pH range for the treatment of wastewater contaminants.

2.
Proc Natl Acad Sci U S A ; 112(12): 3612-7, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25762067

RESUMEN

Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiOx films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O2(g).

3.
Nano Lett ; 16(7): 4082-6, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27322181

RESUMEN

The behavior of n-Si(111) photoanodes covered by monolayer sheets of fluorinated graphene (F-Gr) was investigated under a range of chemical and electrochemical conditions. The electrochemical behavior of n-Si/F-Gr and np(+)-Si/F-Gr photoanodes was compared to hydride-terminated n-Si (n-Si-H) and np(+)-Si-H electrodes in contact with aqueous Fe(CN)6(3-/4-) and Br2/HBr electrolytes as well as in contact with a series of outer-sphere, one-electron redox couples in nonaqueous electrolytes. Illuminated n-Si/F-Gr and np(+)-Si/F-Gr electrodes in contact with an aqueous K3(Fe(CN)6/K4(Fe(CN)6 solutions exhibited stable short-circuit photocurrent densities of ∼10 mA cm(-2) for 100,000 s (>24 h), in comparison to bare Si electrodes, which yielded nearly a complete photocurrent decay over ∼100 s. X-ray photoelectron spectra collected before and after exposure to aqueous anodic conditions showed that oxide formation at the Si surface was significantly inhibited for Si electrodes coated with F-Gr relative to bare Si electrodes exposed to the same conditions. The variation of the open-circuit potential for n-Si/F-Gr in contact with a series of nonaqueous electrolytes of varying reduction potential indicated that the n-Si/F-Gr did not form a buried junction with respect to the solution contact. Further, illuminated n-Si/F-Gr electrodes in contact with Br2/HBr(aq) were significantly more electrochemically stable than n-Si-H electrodes, and n-Si/F-Gr electrodes coupled to a Pt catalyst exhibited ideal regenerative cell efficiencies of up to 5% for the oxidation of Br(-) to Br2.

4.
J Chem Phys ; 145(8): 084705, 2016 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-27586939

RESUMEN

Fundamental details concerning the interaction between H2 and CH3-Si(111) have been elucidated by the combination of diffractive scattering experiments and electronic structure and scattering calculations. Rotationally inelastic diffraction (RID) of H2 and D2 from this model hydrocarbon-decorated semiconductor interface has been confirmed for the first time via both time-of-flight and diffraction measurements, with modest j = 0 → 2 RID intensities for H2 compared to the strong RID features observed for D2 over a large range of kinematic scattering conditions along two high-symmetry azimuthal directions. The Debye-Waller model was applied to the thermal attenuation of diffraction peaks, allowing for precise determination of the RID probabilities by accounting for incoherent motion of the CH3-Si(111) surface atoms. The probabilities of rotationally inelastic diffraction of H2 and D2 have been quantitatively evaluated as a function of beam energy and scattering angle, and have been compared with complementary electronic structure and scattering calculations to provide insight into the interaction potential between H2 (D2) and hence the surface charge density distribution. Specifically, a six-dimensional potential energy surface (PES), describing the electronic structure of the H2(D2)/CH3-Si(111) system, has been computed based on interpolation of density functional theory energies. Quantum and classical dynamics simulations have allowed for an assessment of the accuracy of the PES, and subsequently for identification of the features of the PES that serve as classical turning points. A close scrutiny of the PES reveals the highly anisotropic character of the interaction potential at these turning points. This combination of experiment and theory provides new and important details about the interaction of H2 with a hybrid organic-semiconductor interface, which can be used to further investigate energy flow in technologically relevant systems.

5.
J Phys Chem Lett ; 10(18): 5434-5439, 2019 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-31442376

RESUMEN

The methyl-terminated Si(111) surface possesses a 3-fold in-plane symmetry, with the methyl groups oriented perpendicular to the substrate. The propeller-like rotation of the methyl groups is hindered at room temperature and proceeds via 120° jumps between three isoenergetic minima in registry with the crystalline Si substrate. We have used line-shape analysis of polarization-selected vibrational sum frequency generation spectroscopy to determine the rotational relaxation rate of the surface methyl groups and have measured the temperature dependence of the relaxation rate between 20 and 120 °C. By fitting the measured rate to an Arrhenius dependence, we extracted an activation energy (the rotational barrier) of 830 ± 360 cm-1 and an attempt frequency of (2.9 ± 4.2) × 1013 s-1 for the methyl rotation process. Comparison with the harmonic frequency of a methyl group in a 3-fold cosine potential suggests that the hindered rotation occurs via uncorrelated jumps of single methyl groups rather than concerted gear-like rotation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA