Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Crit Rev Clin Lab Sci ; : 1-14, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456354

RESUMEN

Calcium is a fundamental and integrative element and helps to ensure optimal health by regulating various physiological and pathological processes. While there is substantiated evidence confirming the beneficial effects of calcium in the treatment, management, and prevention of various health conditions, including cancer, conflicting studies are imperative to acknowledge the potential negative role of calcium supplementation. The studies on calcium supplementation showed that a specific dose can help in the maintenance of good human health, and in the control of different types of diseases, including cancer. Calcium alone and when combined with vitamin D, emerges as a promising therapeutic option for efficiently managing cancer growth, when used with chemotherapy. Combination therapy is considered a more effective approach for treating advanced types of colorectal cancer. Nevertheless, several challenges drastically influence the treatment of cancer, such as individual discrepancy, drug resistance, and stage of cancer, among others. Henceforth, novel preventive, reliable therapeutic modalities are essential to control and reduce the incidence and mortality of colorectal cancer (CRC). The calcium-sensing receptor (CaSR) plays a pivotal role in calcium homeostasis, metabolism, and regulation of oncogenesis. Numerous studies have underscored the potential of CaSR, a G protein-coupled receptor, as a potential biomarker and target for colorectal cancer prevention and treatment. The multifaceted involvement of CaSR in anti-inflammatory and anti-carcinogenic processes paves the way for its utilization in the diagnosis and management of colorectal cancer. The current review highlights the important role of supplemental calcium in overall health and disease, along with the exploration of intricate mechanisms of CaSR pathways in the management and prevention of colorectal cancer.

2.
Cell Mol Neurobiol ; 43(8): 3815-3832, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37665407

RESUMEN

Inflammatory biomarkers have been very useful in detecting and monitoring inflammatory processes along with providing helpful information to select appropriate therapeutic strategies. C-reactive protein (CRP) is a nonspecific, but quite useful medical acute inflammatory biomarker and is associated with persistent chronic inflammatory processes. Several studies suggest that different levels of CRP are correlated with neurological disorders such as Alzheimer's disease (AD). However, dynamics of CRP levels have also been observed in virus/bacterial-related infections leading to inflammatory responses and this triggers mTOR-mediated pathways for neurodegeneration diseases. The biophysical structural transition from CRP to monomeric CRP (mCRP) and the significance of the ratio of CRP levels on the onset of symptoms associated with inflammatory response have been discussed. In addition, mTOR inhibitors act as immunomodulators by downregulating the expression of viral infection and can be explored as a potential therapy for neurological diseases.


Asunto(s)
Proteína C-Reactiva , Enfermedades Neurodegenerativas , Humanos , Proteína C-Reactiva/química , Proteína C-Reactiva/metabolismo , Inflamación/metabolismo , Biomarcadores , Serina-Treonina Quinasas TOR
3.
Luminescence ; 38(7): 1287-1296, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36251155

RESUMEN

Nickel hydroxide nanoparticles (NHNPs) are extremely important semiconducting materials for applications in energy storage and energy harvesting devices. This study uses a novel variation in molarity of the sodium hydroxide (NaOH) precipitator solution to enhance the direct optical band gap in the NHNPs chemically synthesized by using nickel nitrate hexahydrate (Ni(NO3 )2 ·6H2 O) as the precursor. The simple, energy benign chemical precipitation route involved the usage of 1 M (Ni(NO3 )2 ·6H2 O) solutions as the precursor and 0.4 M, 0.6 M, and 0.8 M NaOH solutions as the precipitator solutions. The simple variation in precipitator molarity induces an increase in pH from about 6.9 to 7.5 of the reactant solution. As the molarity of the precursor solution does not change, the change in pH of the reactant solution is equivalent to the change in the pH of the precipitator solution. The NHNPs characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), dynamic light scattering (DLS), Fourier-transform infrared (FTIR) and ultraviolet-visible (UV-vis) techniques confirm a reduction of the nanocrystallite size from about 6.8 to 4.5 nm with a concomitant enhancement in the direct optical band gap energy from about 2.64 to 2.74 eV. The possible mechanisms that could be operative behind obtaining microstructurally tuned (MT)-NHNPs and band gap engineering (BGE) of the MT-NHNPs are discussed from both theoretical and physical process perspectives. Further, the implications of these novel results for possible future applications are briefly touched upon. The reported results might be useful to assess the material as an active electrode to improve the performance of batteries.


Asunto(s)
Nanopartículas , Hidróxido de Sodio , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas/química , Hidróxidos , Difracción de Rayos X
4.
BMC Public Health ; 22(1): 1402, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35869470

RESUMEN

BACKGROUND: The world has been battling several vector-borne diseases since time immemorial. Socio-economic marginality, precipitation variations and human behavioral attributes play a major role in the proliferation of these diseases. Lockdown and social distancing have affected social behavioral aspects of human life and somehow impact on the spread of vector borne diseases. This article sheds light into the relationship between COVID-19 lockdown and global dengue burden with special focus on India. It also focuses on the interconnection of the COVID-19 pandemic (waves 1 and 2) and the alteration of human behavioral patterns in dengue cases. METHODS: We performed a systematic search using various resources from different platforms and websites, such as Medline; Pubmed; PAHO; WHO; CDC; ECDC; Epidemiology Unit Ministry of Health (Sri Lanka Government); NASA; NVBDCP from 2015 until 2021. We have included many factors, such as different geographical conditions (tropical climate, semitropic and arid conditions); GDP rate (developed nations, developing nations, and underdeveloped nations). We also categorized our data in order to conform to COVID-19 duration from 2019 to 2021. Data was extracted for the complete duration of 10 years (2012 to 2021) from various countries with different geographical region (arid region, semitropic/semiarid region and tropical region). RESULTS: There was a noticeable reduction in dengue cases in underdeveloped (70-85%), developing (50-90%), and developed nations (75%) in the years 2019 and 2021. The dengue cases drastically reduced by 55-65% with the advent of COVID-19 s wave in the year 2021 across the globe. CONCLUSIONS: At present, we can conclude that COVID-19 and dengue show an inverse relationship. These preliminary, data-based observations should guide clinical practice until more data are made public and basis for further medical research.


Asunto(s)
COVID-19 , Dengue , COVID-19/epidemiología , Control de Enfermedades Transmisibles , Dengue/epidemiología , Dengue/prevención & control , Humanos , India/epidemiología , Pandemias/prevención & control
5.
Mol Genet Metab ; 113(3): 219-24, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25066302

RESUMEN

Canavan disease is a fatal neurological disorder caused by defects in the gene that produces the enzyme aspartoacylase. Enzyme replacement therapy can potentially be used to overcome these defects if a stable enzyme form that can gain access to the appropriate neural cells can be produced. Achieving the proper cellular targeting requires a modified form of aspartoacylase that can traverse the blood-brain barrier. A PEGylated form of aspartoacylase that shows dramatic enhancement in brain tissue access and distribution has been produced. While the mechanism of transport has not yet been established, this modified enzyme is significantly less immunogenic than unmodified aspartoacylase. These improved properties set the stage for more extensive enzyme replacement trials as a possible treatment strategy.


Asunto(s)
Amidohidrolasas/farmacocinética , Encéfalo/metabolismo , Polietilenglicoles/farmacocinética , Amidohidrolasas/inmunología , Animales , Barrera Hematoencefálica/metabolismo , Enfermedad de Canavan/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Terapia de Reemplazo Enzimático , Humanos , Masculino , Ratas Sprague-Dawley , Distribución Tisular
6.
J Biomol Struct Dyn ; 42(11): 5903-5911, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38870351

RESUMEN

Osmolytes are small organic molecules that are known to stabilize proteins and other biological macromolecules under various stressful conditions. They belong to various categories such as amino acids, methylamines, and polyols. These substances are commonly known as 'compatible solutes' because they do not disrupt cellular processes and help regulate the osmotic balance within cells. In the case of ribonuclease A (RNase A), which is prone to aggregation, the presence of osmolytes can help to maintain its structural stability and prevent unwanted interactions leading to protein aggregation. In this study, we investigated the interaction between RNase A and several osmolytes using molecular docking and molecular dynamics (MD) simulations. We performed molecular docking to predict the binding mode and binding affinity of each osmolyte with RNase A. MD simulations were then carried out to investigate the dynamics and stability of the RNase A-osmolyte complexes. Our results show that two osmolytes, glucosylglycerol and sucrose have favorable binding affinities with RNase A. The possible role of these osmolytes in stabilizing the RNase A and prevention of aggregation is also explored. By providing computational insights into the interaction between RNase A and osmolytes, the study offers valuable information that could aid in comprehending the mechanisms by which osmolytes protect proteins and help in designing therapeutics for protein-related disorders based on osmolytes. These findings may have significant implications for the development of novel strategies aimed at preventing protein misfolding and aggregation in diverse disease conditions.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Ribonucleasa Pancreática , Ribonucleasa Pancreática/química , Ribonucleasa Pancreática/metabolismo , Termodinámica , Sitios de Unión , Metilaminas/química , Metilaminas/metabolismo , Enlace de Hidrógeno
7.
Ageing Res Rev ; : 102394, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38950868

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative pathologic entity characterized by the abnormal presence of tau and macromolecular Aß deposition that leads to the degeneration or death of neurons. In addition to that, glucose-6-phosphate dehydrogenase (G6PD) has a multifaceted role in the process of AD development, where it can be used as both a marker and a target. G6PD activity is dysregulated due to its contribution to oxidative stress, neuroinflammation, and neuronal death. In this context, the current review presents a vivid depiction of recent findings on the relationship between AD progression and changes in the expression or activity of G6PD. The efficacy of the proposed G6PD-based therapeutics has been demonstrated in multiple studies using AD mouse models as representative animal model systems for cognitive decline and neurodegeneration associated with this disease. Innovative therapeutic insights are made for the boosting of G6PD activity via novel innovative nanotechnology and microfluidics tools in drug administration technology. Such approaches provide innovative methods of surpassing the blood-brain barrier, targeting step-by-step specific neural pathways, and overcoming biochemical disturbances that accompany AD. Using different nanoparticles loaded with G6DP to target specific organs, e.g., G6DP-loaded liposomes, enhances BBB penetration and brain distribution of G6DP. Many nanoparticles, which are used for different purposes, are briefly discussed in the paper. Such methods to mimic BBB on organs on-chip offer precise disease modeling and drug testing using microfluidic chips, requiring lower sample amounts and producing faster findings compared to conventional techniques. There are other contributions to microfluid in AD that are discussed briefly. However, there are some limitations accompanying microfluidics that need to be worked on to be used for AD. This study aims to bridge the gap in understanding AD with the synergistic use of promising technologies; microfluid and nanotechnology for future advancements.

8.
J Biol Chem ; 287(52): 43557-64, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23115239

RESUMEN

We have investigated the range of cleft closure conformational states that the agonist-binding domains of the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors occupy when bound to a series of willardiine derivatives using single-molecule FRET. These studies show that the agonist-binding domain exhibits varying degrees of dynamics when bound to the different willardiines with differing efficacies. The chlorowillardiine- and nitrowillardiine-bound form of the agonist-binding domain probes a narrower range of cleft closure states relative to the iodowillardiine bound form of the protein, with the antagonist (αS)-α-amino-3-[(4-carboxyphenyl)methyl]-3,4-dihydro-2,4-dioxo-1(2H)-pyrimidinepropanoic acid (UBP-282)-bound form exhibiting the widest range of cleft closure states. Additionally, the average cleft closure follows the order UBP-282 > iodowillardiine > chlorowillardiine > nitrowillardiine-bound forms of agonist-binding domain. These single-molecule FRET data, along with our previously reported data for the glutamate-bound forms of wild type and T686S mutant proteins, show that the mean currents under nondesensitizing conditions can be directly correlated to the fraction of the agonist-binding domains in the "closed" cleft conformation. These results indicate that channel opening in the AMPA receptors is controlled by both the ability of the agonist to induce cleft closure and the dynamics of the agonist-binding domain when bound to the agonist.


Asunto(s)
Alanina/análogos & derivados , Receptores AMPA/agonistas , Receptores AMPA/química , Uracilo/química , Alanina/química , Sustitución de Aminoácidos , Transferencia Resonante de Energía de Fluorescencia/métodos , Células HEK293 , Humanos , Mutación Missense , Estructura Terciaria de Proteína , Receptores AMPA/genética , Receptores AMPA/metabolismo
9.
Chembiochem ; 14(9): 1075-80, 2013 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-23733413

RESUMEN

Lengthening smFRET lifetimes: We investigated various photoprotection system combinations to find the combination that optimally extended the photobleach lifetime of a Cy3/Cy5 smFRET pair attached to a DNA hairpin in a single-molecule environment. We found that the glucose/glucose oxygen-scavenging solution in combination with redox-based photostabilization solutions yielded the longest average photobleaching lifetimes.


Asunto(s)
Carbocianinas/química , Transferencia Resonante de Energía de Fluorescencia , Fotoblanqueo , ADN/química , Colorantes Fluorescentes/química , Glucosa/química , Oxidación-Reducción
10.
ACS Omega ; 8(50): 47367-47379, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38144115

RESUMEN

Osmolytes are small organic compounds accumulated at higher concentrations in the cell under various stress conditions like high temperature, high salt, high pressure, etc. Osmolytes mainly include four major classes of compounds including sugars, polyols, methylamines, and amino acids and their derivatives. In addition to their ability to maintain protein stability and folding, these osmolytes, also termed as chemical chaperones, can prevent protein misfolding and aggregation. Although being efficient protein folders and stabilizers, these osmolytes exhibit certain unavoidable limitations such as nearly molar concentrations of osmolytes being required for their effect, which is quite difficult to achieve inside a cell or in the extracellular matrix due to nonspecificity and limited permeability of the blood-brain barrier system and reduced bioavailability. These limitations can be overcome to a certain extent by using smart delivery platforms for the targeted delivery of osmolytes to the site of action. In this context, osmolyte-functionalized nanoparticles, termed nano-osmolytes, enhance the protein stabilization and chaperone efficiency of osmolytes up to 105 times in certain cases. For example, sugars, polyols, and amino acid functionalized based nano-osmolytes have shown tremendous potential in preventing protein aggregation. The enhanced potential of nano-osmolytes can be attributed to their high specificity at low concentrations, high tunability, amphiphilicity, multivalent complex formation, and efficient drug delivery system. Keeping in view the promising potential of nano-osmolytes conjugation in tailoring the osmolyte-protein interactions, as compared to their molecular forms, the present review summarizes the recent advancements of the nano-osmolytes that enhance the protein stability/folding efficiency and ability to act as artificial chaperones with increased potential to prevent protein misfolding disorders. Some of the potential nano-osmolyte aggregation inhibitors have been highlighted for large-scale screening with future applications in aggregation disorders. The synthesis of nano-osmolytes by numerous approaches and future perspectives are also highlighted.

11.
Int J Biol Macromol ; 216: 179-192, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35780921

RESUMEN

Since its inception, food additive has been an integral part of the food processing industry with various commercial roles. Besides its advantages, various studies have already highlighted its long-term adverse effects on human health. However, in terms of protein structures and functions, the innate mechanism that triggers these effects has not been elucidated in previously reported studies. Our work takes an in silico approach to delve into structural implications resulting from these additives with three well studied metabolic proteins-lysozyme, bovine serum albumin (BSA) and ribonuclease A. Three classes of food additives- synthetic color, preservatives, and phosphate-containing, are taken here to understand their effects on the aforementioned metabolic proteins. Conventional molecular docking and dynamics (MD) studies reveal that these additives induce significant structural perturbations. Among them, carmoisine brings about the most secondary structural changes for lysozyme and ribonuclease A, whereas sodium tripolyphosphate affects BSA the most. To restore the secondary structural loss, we further examine the roles of osmolytes through cross-docking and higher timescale MD simulations. These studies unravel that application of osmolytes like raffinose and trehalose triggers structural restoration for BSA, lysozyme and ribonuclease A, and highlight their roles as co-formulants to alleviate the adverse effects of food additives.


Asunto(s)
Aditivos Alimentarios , Muramidasa , Simulación por Computador , Aditivos Alimentarios/química , Humanos , Simulación del Acoplamiento Molecular , Ribonucleasa Pancreática , Albúmina Sérica Bovina/química
12.
3 Biotech ; 12(1): 18, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34926122

RESUMEN

Various microbial strains and techniques are being used to improve power production in microbial fuel cells. Cow dung is a peculiar source of anaerobic and micro-aerophilic organisms that were employed in this study to isolate exo-electrogenic microorganisms. To validate their exo-electrogenic nature, all eight visually distinct bacterial single-cell colonies were tested using the ferrocyanide reduction assay, which resulted in the selection of one bacterial strain AD1-ELB with the ability to reduce ferrocyanide for further biochemical, physiological and electrochemical characterization. The selected strain AD1-ELB was identified as Bacillus velezensis by 16 s rRNA gene sequencing. When used in a single-chambered MFC, the isolated AD1-ELB strain produced a maximum open-circuit voltage of 455 mV with a maximum current density of 51.78 µA/cm2 and maximum power density of 4.33 µW/cm2 on the 16th day. Bacillus velezensis AD1-ELB strain was treated with low-frequency ultrasound (40 kHz) for 1, 2, 3, 4, and 5 min to assess the effect of ultrasonic pre-treatment on an isolated pure culture-based microbial fuel cell. A 3-min exposure to low-frequency ultrasonic therapy resulted in an increase in maximum power of 4.33 µW/cm2 with a current density of 51.78 µA/cm2 in the MFC, which decreases significantly after 4 and 5 min. Thus, the overall power density achieved was 1.89 times greater than in MFCs with untreated strain. These findings support the use of low-frequency ultrasonic stimulation to improve the performance of microbial fuel cell devices and are restricted to the pure, single-cell strain AD1-ELB, with the potential for variation if some other isolated strain is utilized, hence requiring further study to determine its relative variations.

13.
3 Biotech ; 12(8): 172, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35845113

RESUMEN

Microbial desalination cells (MDC) are evaluated as an environmentally friendly approach for purifying saline water by using power generated by the decomposition of organic materials in the wastewater. The present study is to evaluate the ferrocyanide-redox and biocathode approach in treating simulated saline water and subsequently recovering bio-electricity using actual domestic reverse osmosis reject water. For the desalination of simulated saline water and domestic reverse osmosis reject water, a three-chamber microbial desalination cell with graphite electrodes and anion and cation exchange membranes was constructed. When treating simulated saline water, the biocathode technique achieved a 5% improvement in salt removal and a 4.9% increase in current and power density when compared to the ferrocyanide-redox approach. When biocathode MDC was used to treat domestic reverse osmosis reject water, a maximum current and power density of 3.81 µA/cm2 and 0.337 µW/cm2, respectively, were recorded, as well as COD removal of 83.9% at the desalination chamber and ions reduction for Na, K, and Ca of up to 79%, 76.5%, and 72%, respectively, in a batch operation for 31 days with a stable pH (≈ 7). Thus, the study revealed a microbial desalination cell capable of recovering bioenergy and reducing salt from domestic reverse osmosis reject water with a consistent pH range.

14.
Curr Med Chem ; 29(1): 66-85, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33820515

RESUMEN

There has been substantial progress in artificial intelligence (AI) algorithms and their medical sciences applications in the last two decades. AI-assisted programs have already been established for remote health monitoring using sensors and smartphones. A variety of AI-based prediction models are available for gastrointestinal, inflammatory, non-malignant diseases, and bowel bleeding using wireless capsule endoscopy, hepatitis-associated fibrosis using electronic medical records, and pancreatic carcinoma utilizing endoscopic ultrasounds. AI-based models may be of immense help for healthcare professionals in the identification, analysis, and decision support using endoscopic images to establish prognosis and risk assessment of patients' treatment employing multiple factors. Enough randomized clinical trials are warranted to establish the efficacy of AI-algorithms assisted and non-AI-based treatments before approval of such techniques from medical regulatory authorities. In this article, available AI approaches and AI-based prediction models for detecting gastrointestinal, hepatic, and pancreatic diseases are reviewed. The limitations of AI techniques in such diseases' prognosis, risk assessment, and decision support are discussed.


Asunto(s)
Gastroenterología , Enfermedades Gastrointestinales , Enfermedades Pancreáticas , Algoritmos , Inteligencia Artificial , Enfermedades Gastrointestinales/diagnóstico , Humanos , Enfermedades Pancreáticas/diagnóstico
15.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166524, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35985445

RESUMEN

Alzheimer's disease (AD) and prostate cancer (PCa) are considered the leading causes of death in elderly people worldwide. Although both these diseases have striking differences in their pathologies, a few underlying mechanisms are similar when cell survival is considered. In the current study, we employed an in-silico approach to decipher the possible role of bacterial proteins in the initiation and progression of AD and PCa. We further analyzed the molecular connections between these two life-threatening diseases. The androgen deprivation therapy used against PCa has been shown to promote castrate resistant PCa as well as AD. In addition, cell signaling pathways, such as Akt, IGF, and Wnt contribute to the progression of both AD and PCa. Besides, various proteins and genes are also common in disease progression. One such similarity is mTOR signaling. mTOR is the common downstream target for many signaling pathways and plays a vital role in both PCa and AD. Targeting mTOR can be a favorable line of treatment for both AD and PCa. However, drug resistance is one of the challenges in effective drug therapy. A few drugs that target mTOR have now become ineffective due to the development of resistance. In that regard, phytochemicals can be a rich source of novel drug candidates as they can act via multiple mechanisms. This review also presents mTOR targeting phytochemicals with promising anti-PCa, anti-AD activities, and approaches to overcome the issues associated with phytochemical-based therapies in clinical trials.


Asunto(s)
Enfermedad de Alzheimer , Neoplasias de la Próstata , Anciano , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Antagonistas de Andrógenos/uso terapéutico , Andrógenos/metabolismo , Proteínas Bacterianas , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
16.
3 Biotech ; 12(10): 272, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36105863

RESUMEN

Chlorpyrifos (CPF) is an extensively used organophosphate pesticide for crop protection. However, there are concerns about it contaminating the environment and human health, with estimated three lakh deaths annually. The molecular modeling protocol was assisted in redesigning thirteen well-known CPF linkers and inserting them at five selectable CPF (R1-R5) positions of CPF to get 258 CPF derivatives. CPF and its derivatives were optimized using LigPrep and docked to a grid centralized on Trp214 using extra precision glide docking. The Binding free energy of complexes was calculated using molecular mechanics/generalized born surface area (MM-GBSA). CPF and CPFD-225 have glide scores of - 3.08 and - 6.152 kcal/mol, respectively, with human serum albumin and ΔG bind for CPF (- 33.041817 kcal/mol) (- 52.825 kcal/mol) for CPF-D225. The top ten CPF derivatives showed at least ninefold better binding free energy than the CPF proposed for polyclonal antibody production. Subsequently, molecular docking studies revealed that CPF and its derivatives could bind to human serum albumin (HSA). Furthermore, using the Desmond package, a 100-ns molecular dynamics (MD) simulation was performed on the potential binding site. The final systems of CPF-HSA and CPF-222D complexes consist of 76,014 and 76,026 atoms, respectively. The physical stability of both the systems (CPF-HSA and CPF-222D) was analyzed by considering the overall potential energy, RMSF, RMSD, Hydrophobic interactions, and water-mediated patterns, which showed total energy of - 141,610 kcal/mol and - 140,150 kcal/mol, respectively. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03344-7.

17.
Curr Pharm Biotechnol ; 23(3): 361-387, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33966618

RESUMEN

The coronavirus pandemic hit the world lately and caused acute respiratory syndrome in humans. The causative agent of the disease was soon identified by scientists as SARS-CoV-2 and later called a novel coronavirus by the general public. Due to the severity and rapid spread of the disease, WHO classifies the COVID-19 pandemic as the 6th public health emergency even after taking efforts like worldwide quarantine and restrictions. Since only symptomatic treatment is available, the best way to control the spread of the virus is by taking preventive measures. Various types of antigen/antibody detection kits and diagnostic methods are available for the diagnosis of COVID-19 patients. In recent years, various phytochemicals and repurposing drugs showing a broad range of anti-viral activities with different modes of actions have been identified. Repurposing drugs such as arbidol, hydroxychloroquine, chloroquine, lopinavir, favipiravir, remdesivir, hexamethylene amiloride, dexamethasone, tocilizumab, interferon-ß, and neutralizing antibodies exhibit in vitro anti-coronaviral properties by inhibiting multiple processes in the virus life cycle. Various research groups are involved in drug trials and vaccine development. Plant-based antiviral compounds such as baicalin, calanolides, curcumin, oxymatrine, matrine, and resveratrol exhibit different modes of action against a wide range of positive/negative sense-RNA/DNA virus, and future researches need to be conducted to ascertain their role and use in managing SARS-CoV-2. Thus this article is an attempt to review the current understanding of COVID- 19 acute respiratory disease and summarize its clinical features with their prospective control and various aspects of the therapeutic approach.


Asunto(s)
COVID-19 , Pandemias , Antivirales/uso terapéutico , Humanos , Estudios Prospectivos , SARS-CoV-2 , Desarrollo de Vacunas
18.
Front Cell Infect Microbiol ; 12: 933824, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36046742

RESUMEN

Coronavirus disease 2019 (COVID-19) pandemic has killed huge populations throughout the world and acts as a high-risk factor for elderly and young immune-suppressed patients. There is a critical need to build up secure, reliable, and efficient drugs against to the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Bioactive compounds of Ashwagandha [Withania somnifera (L.) Dunal] may implicate as herbal medicine for the management and treatment of patients infected by SARS-CoV-2 infection. The aim of the current work is to update the knowledge of SARS-CoV-2 infection and information about the implication of various compounds of medicinal plant Withania somnifera with minimum side effects on the patients' organs. The herbal medicine Withania somnifera has an excellent antiviral activity that could be implicated in the management and treatment of flu and flu-like diseases connected with SARS-CoV-2. The analysis was performed by systematically re-evaluating the published articles related to the infection of SARS-CoV-2 and the herbal medicine Withania somnifera. In the current review, we have provided the important information and data of various bioactive compounds of Withania somnifera such as Withanoside V, Withanone, Somniferine, and some other compounds, which can possibly help in the management and treatment of SARS-CoV-2 infection. Withania somnifera has proved its potential for maintaining immune homeostasis of the body, inflammation regulation, pro-inflammatory cytokines suppression, protection of multiple organs, anti-viral, anti-stress, and anti-hypertensive properties. Withanoside V has the potential to inhibit the main proteases (Mpro) of SARS-CoV-2. At present, synthetic adjuvant vaccines are used against COVID-19. Available information showed the antiviral activity in Withanoside V of Withania somnifera, which may explore as herbal medicine against to SARS-CoV-2 infection after standardization of parameters of drug development and formulation in near future.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Withania , Anciano , Antivirales/uso terapéutico , Descubrimiento de Drogas , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , SARS-CoV-2
19.
Front Mol Biosci ; 9: 964624, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36310589

RESUMEN

Osmolytes are naturally occurring small molecular weight organic molecules, which are accumulated in large amounts in all life forms to maintain the stability of cellular proteins and hence preserve their functions during adverse environmental conditions. Trimethylamine N-oxide (TMAO) and N,N,N-trimethylglycine (betaine) are methylamine osmolytes that have been extensively studied for their diverse roles in humans and have demonstrated opposing relations with human health. These osmolytes are obtained from food and synthesized endogenously using dietary constituents like choline and carnitine. Especially, gut microbiota plays a vital role in TMAO synthesis and contributes significantly to plasma TMAO levels. The elevated plasma TMAO has been reported to be correlated with the pathogenesis of numerous human diseases, including cardiovascular disease, heart failure, kidney diseases, metabolic syndrome, etc.; Hence, TMAO has been recognized as a novel biomarker for the detection/prediction of several human diseases. In contrast, betaine acts as a methyl donor in one-carbon metabolism, maintains cellular S-adenosylmethionine levels, and protects the cells from the harmful effects of increased plasma homocysteine. Betaine also demonstrates antioxidant and anti-inflammatory activities and has a promising therapeutic value in several human diseases, including homocystinuria and fatty liver disease. The present review examines the multifarious functions of TMAO and betaine with possible molecular mechanisms towards a better understanding of their emerging and diverging functions with probable implications in the prevention, diagnosis, and treatment of human diseases.

20.
CNS Neurol Disord Drug Targets ; 20(8): 723-735, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32885762

RESUMEN

Alzheimer's Disease (AD), characterized by abnormally phosphorylated tau, Paired Helical Filaments (PHFs), Neurofibrillary Tangles (NFTs), deregulated mammalian Target Of Rapamycin (mTOR), and Aß deposits, is a multifactorial disease with sleep disorders being one of the causative agents. Therefore, we have reviewed the literature and have tried to decode the existence of positive feedback, reciprocal and a bidirectional relationship allying between sleep disturbances and AD. Much light has been thrown on the role of tau pathology and amyloid pathology in sleep pathology and its association with AD pathology. We have also discussed the role of melatonin in regulating sleep disorders and AD. The neuroprotective effect of melatonin via inhibiting tau hyperphosphorylation and Aß deposition has also been discussed. Moreover, astrocytes involvement in aggravating AD has also been highlighted in this review. Several therapeutic approaches aimed at improving both sleep disorders and AD have been duly discussed such as administration of antidepressants and antihistamines, immunotherapy, metal chelators, melatonin supplementation, light therapy and physical activity. Despite consistent efforts, the complete etiology concerning sleep disorder and AD is still unclear. Therefore, further research is needed to unravel the mechanism involved and also to develop strategies that may help in obstructing AD in its preclinical stage.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Trastornos del Sueño-Vigilia/complicaciones , Péptidos beta-Amiloides/metabolismo , Proteínas Amiloidogénicas , Humanos , Melatonina/uso terapéutico , Ovillos Neurofibrilares , Fosforilación , Sueño/fisiología , Trastornos del Sueño-Vigilia/tratamiento farmacológico , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA