Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 609(7925): 89-93, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35978190

RESUMEN

Ongoing deforestation poses a major threat to biodiversity1,2. With limited resources and imminent threats, deciding when as well as where to conserve is a fundamental question. Here we use a dynamic optimization approach to identify an optimal sequence for the conservation of plant species in 458 forested ecoregions globally over the next 50 years. The optimization approach includes species richness in each forested ecoregion, complementarity of species across ecoregions, costs of conservation that rise with cumulative protection in an ecoregion, the existing degree of protection, the rate of deforestation and the potential for reforestation in each ecoregion. The optimal conservation strategy for this formulation initially targets a small number of ecoregions where further deforestation leads to large reductions in species and where the costs of conservation are low. In later years, conservation efforts spread to more ecoregions, and invest in both expanded protection of primary forest and reforestation. The largest gains in species conservation come in Melanesia, South and Southeast Asia, the Anatolian peninsula, northern South America and Central America. The results highlight the potentially large gains in conservation that can be made with carefully targeted investments.


Asunto(s)
Conservación de los Recursos Naturales , Agricultura Forestal , Bosques , Biodiversidad , América Central , Conservación de los Recursos Naturales/métodos , Agricultura Forestal/métodos , América del Sur , Factores de Tiempo , Árboles/clasificación , Árboles/crecimiento & desarrollo
2.
Proc Natl Acad Sci U S A ; 120(15): e2210417120, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37011190

RESUMEN

High-quality water resources provide a wide range of benefits, but the value of water quality is often not fully represented in environmental policy decisions, due in large part to an absence of water quality valuation estimates at large, policy relevant scales. Using data on property values with nationwide coverage across the contiguous United States, we estimate the benefits of lake water quality as measured through capitalization in housing markets. We find compelling evidence that homeowners place a premium on improved water quality. This premium is largest for lakefront property and decays with distance from the waterbody. In aggregate, we estimate that 10% improvement of water quality for the contiguous United States has a value of $6 to 9 billion to property owners. This study provides credible evidence for policymakers to incorporate lake water quality value estimates in environmental decision-making.

3.
Proc Natl Acad Sci U S A ; 120(27): e2220401120, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37364118

RESUMEN

Sustainable development requires jointly achieving economic development to raise standards of living and environmental sustainability to secure these gains for the long run. Here, we develop a local-to-global, and global-to-local, earth-economy model that integrates the Global Trade Analysis Project (GTAP)-computable general equilibrium model of the economy with the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model of fine-scale, spatially explicit ecosystem services. The integrated model, GTAP-InVEST, jointly determines land use, environmental conditions, ecosystem services, market prices, supply and demand across economic sectors, trade across regions, and aggregate performance metrics like GDP. We use the integrated model to analyze the contribution of investing in nature for economic prosperity, accounting for the impact of four important ecosystem services (pollination, timber provision, marine fisheries, and carbon sequestration). We show that investments in nature result in large improvements relative to a business-as-usual path, accruing annual gains of $100 to $350 billion (2014 USD) with the largest percentage gains in the lowest-income countries. Our estimates include only a small subset of ecosystem services and could be far higher with inclusion of more ecosystem services, incorporation of ecological tipping points, and reduction in substitutability that limits economic adjustments to declines in natural capital. Our analysis highlights the need for improved environmental-economic modeling and the vital importance of integrating environmental information firmly into economic analysis and policy. The benefits of doing so are potentially very large, with the greatest percentage benefits accruing to inhabitants of the poorest countries.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Desarrollo Sostenible , Modelos Económicos , Inversiones en Salud
4.
Environ Sci Technol ; 58(1): 381-390, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38101325

RESUMEN

Understanding how best to use limited land without compromising food security, health, and beneficial ecosystem functions is a critical challenge of our time. Ecosystem service assessments increasingly inform land-use decisions but seldom include the effects of land use on air quality, the largest environmental health risk. Here, we estimate and value the air quality health effects of potential land-use policies and projected trends in the United States, alongside carbon sequestration and economic returns to land, until 2051. We show that air quality health effects are of first-order importance in land-use decisions, often larger in value than carbon sequestration and economic returns combined. When air quality is properly accounted for, policies that appeared beneficial are shown to be detrimental and vice versa. Land-use-driven air quality impacts are largely from agricultural emissions and biogenic forest emissions, although incentives for reduced deforestation remain beneficial overall. Without evaluating air quality, we are unable to determine whether land-use decisions make us better or worse off.


Asunto(s)
Contaminación del Aire , Ecosistema , Bosques , Agricultura , Políticas , Conservación de los Recursos Naturales
5.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33972419

RESUMEN

Agriculture is a major contributor to air pollution, the largest environmental risk factor for mortality in the United States and worldwide. It is largely unknown, however, how individual foods or entire diets affect human health via poor air quality. We show how food production negatively impacts human health by increasing atmospheric fine particulate matter (PM2.5), and we identify ways to reduce these negative impacts of agriculture. We quantify the air quality-related health damages attributable to 95 agricultural commodities and 67 final food products, which encompass >99% of agricultural production in the United States. Agricultural production in the United States results in 17,900 annual air quality-related deaths, 15,900 of which are from food production. Of those, 80% are attributable to animal-based foods, both directly from animal production and indirectly from growing animal feed. On-farm interventions can reduce PM2.5-related mortality by 50%, including improved livestock waste management and fertilizer application practices that reduce emissions of ammonia, a secondary PM2.5 precursor, and improved crop and animal production practices that reduce primary PM2.5 emissions from tillage, field burning, livestock dust, and machinery. Dietary shifts toward more plant-based foods that maintain protein intake and other nutritional needs could reduce agricultural air quality-related mortality by 68 to 83%. In sum, improved livestock and fertilization practices, and dietary shifts could greatly decrease the health impacts of agriculture caused by its contribution to reduced air quality.


Asunto(s)
Agricultura/normas , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Alimentos/normas , Estado de Salud , Material Particulado/análisis , Agricultura/métodos , Agricultura/estadística & datos numéricos , Amoníaco/análisis , Animales , Productos Agrícolas/metabolismo , Enfermedad/etiología , Monitoreo del Ambiente/métodos , Monitoreo del Ambiente/estadística & datos numéricos , Fertilizantes , Geografía , Humanos , Ganado/metabolismo , Mortalidad/tendencias , Material Particulado/efectos adversos , Estados Unidos
6.
Land Econ ; 100(1): 89-108, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38515763

RESUMEN

This study uses Zillow's ZTRAX property transaction database to investigate variation in hedonic price effects of water clarity on single-family houses throughout the United States. We consider five spatial scales and estimate models using different sample selection criteria and model specifications. Our results indicate considerable spatial heterogeneity both within and across the four U.S. Census regions. However, we also find heterogeneity resulting from different types of investigator decisions, including sample selection and modelling choices. Thus, it is necessary to use practical knowledge to consider the limits of market areas and to investigate the robustness of estimation results to investigator choices. (JEL Q51).

7.
J Environ Manage ; 364: 121397, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38878569

RESUMEN

Climate change will shift the composition of northern Minnesota forests from boreal to temperate by the end of the century. This shift in forest composition will likely affect outdoor recreation, a valuable ecosystem service and a key economic driver for the region. In this context, the objective of our paper is to empirically examine the relationship between forest composition and recreation. We analyze the effect of changes in forest composition for seven forest types on seven types of recreation using a lognormal pooled panel regression model for Minnesota's Laurentian Mixed Forest Province. Earlier research showed forest composition affected recreation at the level of broad groups of broadleaved or coniferous species. We find a statistically significant empirical association between forest composition and recreation at the forest type level (forest types within those broad groups). This relationship varies across forest types and recreation categories. For example, big game hunting is positively related to elm-ash-cottonwood and white-red-jack pine and negatively associated with aspen-birch. We find individual forest types within broad groups of broadleaved or coniferous forests, have different relationships with recreation, so that these broad groups are not sufficient in capturing the effect of forest composition on recreation. Our results are of interest in the context of current shifts in forest composition caused by climate change, which could also affect recreation. Our findings suggest adding a forest composition lens to existing policies could facilitate strategies for more effective recreation management and climate change adaptation.


Asunto(s)
Cambio Climático , Ecosistema , Bosques , Recreación , Conservación de los Recursos Naturales , Minnesota
8.
Nature ; 546(7656): 73-81, 2017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28569796

RESUMEN

Tens of thousands of species are threatened with extinction as a result of human activities. Here we explore how the extinction risks of terrestrial mammals and birds might change in the next 50 years. Future population growth and economic development are forecasted to impose unprecedented levels of extinction risk on many more species worldwide, especially the large mammals of tropical Africa, Asia and South America. Yet these threats are not inevitable. Proactive international efforts to increase crop yields, minimize land clearing and habitat fragmentation, and protect natural lands could increase food security in developing nations and preserve much of Earth's remaining biodiversity.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/tendencias , Extinción Biológica , Animales , Mapeo Geográfico , Actividades Humanas , Humanos , Medición de Riesgo
9.
Proc Natl Acad Sci U S A ; 117(25): 14593-14601, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32513694

RESUMEN

Gross domestic product (GDP) summarizes a vast amount of economic information in a single monetary metric that is widely used by decision makers around the world. However, GDP fails to capture fully the contributions of nature to economic activity and human well-being. To address this critical omission, we develop a measure of gross ecosystem product (GEP) that summarizes the value of ecosystem services in a single monetary metric. We illustrate the measurement of GEP through an application to the Chinese province of Qinghai, showing that the approach is tractable using available data. Known as the "water tower of Asia," Qinghai is the source of the Mekong, Yangtze, and Yellow Rivers, and indeed, we find that water-related ecosystem services make up nearly two-thirds of the value of GEP for Qinghai. Importantly most of these benefits accrue downstream. In Qinghai, GEP was greater than GDP in 2000 and three-fourths as large as GDP in 2015 as its market economy grew. Large-scale investment in restoration resulted in improvements in the flows of ecosystem services measured in GEP (127.5%) over this period. Going forward, China is using GEP in decision making in multiple ways, as part of a transformation to inclusive, green growth. This includes investing in conservation of ecosystem assets to secure provision of ecosystem services through transregional compensation payments.


Asunto(s)
Conservación de los Recursos Naturales/economía , Toma de Decisiones , Ecosistema , Modelos Económicos , Desarrollo Sostenible , China
10.
Proc Natl Acad Sci U S A ; 117(51): 32799-32805, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33288690

RESUMEN

Declining biodiversity and ecosystem functions put many of nature's contributions to people at risk. We review and synthesize the scientific literature to assess 50-y global trends across a broad range of nature's contributions. We distinguish among trends in potential and realized contributions of nature, as well as environmental conditions and the impacts of changes in nature on human quality of life. We find declining trends in the potential for nature to contribute in the majority of material, nonmaterial, and regulating contributions assessed. However, while the realized production of regulating contributions has decreased, realized production of agricultural and many material commodities has increased. Environmental declines negatively affect quality of life, but social adaptation and the availability of substitutes partially offset this decline for some of nature's contributions. Adaptation and substitutes, however, are often imperfect and come at some cost. For many of the contributions of nature, we find differing trends across different countries and regions, income classes, and ethnic and social groups, reinforcing the argument for more consistent and equitable measurement.

11.
Proc Natl Acad Sci U S A ; 117(12): 6300-6307, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32165543

RESUMEN

We consider two aspects of the human enterprise that profoundly affect the global environment: population and consumption. We show that fertility and consumption behavior harbor a class of externalities that have not been much noted in the literature. Both are driven in part by attitudes and preferences that are not egoistic but socially embedded; that is, each household's decisions are influenced by the decisions made by others. In a famous paper, Garrett Hardin [G. Hardin, Science 162, 1243-1248 (1968)] drew attention to overpopulation and concluded that the solution lay in people "abandoning the freedom to breed." That human attitudes and practices are socially embedded suggests that it is possible for people to reduce their fertility rates and consumption demands without experiencing a loss in wellbeing. We focus on fertility in sub-Saharan Africa and consumption in the rich world and argue that bottom-up social mechanisms rather than top-down government interventions are better placed to bring about those ecologically desirable changes.


Asunto(s)
Conservación de los Recursos Naturales , Comportamiento del Consumidor , Conducta Reproductiva , Cambio Social , África del Sur del Sahara , Países Desarrollados , Fertilidad , Humanos , Renta , Crecimiento Demográfico , Conformidad Social , Desarrollo Sostenible , Tecnología
12.
Proc Natl Acad Sci U S A ; 116(13): 6001-6006, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30858319

RESUMEN

Fine particulate matter (PM2.5) air pollution exposure is the largest environmental health risk factor in the United States. Here, we link PM2.5 exposure to the human activities responsible for PM2.5 pollution. We use these results to explore "pollution inequity": the difference between the environmental health damage caused by a racial-ethnic group and the damage that group experiences. We show that, in the United States, PM2.5 exposure is disproportionately caused by consumption of goods and services mainly by the non-Hispanic white majority, but disproportionately inhaled by black and Hispanic minorities. On average, non-Hispanic whites experience a "pollution advantage": They experience ∼17% less air pollution exposure than is caused by their consumption. Blacks and Hispanics on average bear a "pollution burden" of 56% and 63% excess exposure, respectively, relative to the exposure caused by their consumption. The total disparity is caused as much by how much people consume as by how much pollution they breathe. Differences in the types of goods and services consumed by each group are less important. PM2.5 exposures declined ∼50% during 2002-2015 for all three racial-ethnic groups, but pollution inequity has remained high.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Economía/estadística & datos numéricos , Disparidades en el Estado de Salud , Exposición por Inhalación/efectos adversos , Negro o Afroamericano/estadística & datos numéricos , Hispánicos o Latinos/estadística & datos numéricos , Humanos , Exposición por Inhalación/estadística & datos numéricos , Material Particulado/efectos adversos , Factores Socioeconómicos , Estados Unidos/epidemiología , Población Blanca/estadística & datos numéricos
13.
PLoS Biol ; 16(8): e2005620, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30169504

RESUMEN

Considerable outside funding will be required to overcome the financial shortfalls faced by most of Africa's protected areas. Given limited levels of external support, it will be essential to allocate these funds wisely. While most recent studies on conservation triage have recommended prioritizing reserves with the highest remaining conservation value (the "last best places"), such investments are complicated by the fact that these same reserves often attract the greatest revenues from ecotourism and thus the most attention from corrupt local governments. Alternatively, philanthropic organizations might achieve greater returns from investing in the management of neglected areas with lower current conservation value but with less financial leakage from corruption. We outline here how high levels of corruption could favor a strategy that shifts investments away from the last best places.


Asunto(s)
Conservación de los Recursos Naturales/economía , Inversiones en Salud/ética , África , Gobierno , Humanos , Inversiones en Salud/economía , Inversiones en Salud/tendencias
14.
Proc Natl Acad Sci U S A ; 115(15): 3876-3881, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29581313

RESUMEN

The biodiversity-ecosystem functioning (BEF) literature provides strong evidence of the biophysical basis for the potential profitability of greater diversity but does not address questions of optimal management. BEF studies typically focus on the ecosystem outputs produced by randomly assembled communities that only differ in their biodiversity levels, measured by indices such as species richness. Landholders, however, do not randomly select species to plant; they choose particular species that collectively maximize profits. As such, their interest is not in comparing the average performance of randomly assembled communities at each level of biodiversity but rather comparing the best-performing communities at each diversity level. Assessing the best-performing mixture requires detailed accounting of species' identities and relative abundances. It also requires accounting for the financial cost of individual species' seeds, and the economic value of changes in the quality, quantity, and variability of the species' collective output-something that existing multifunctionality indices fail to do. This study presents an assessment approach that integrates the relevant factors into a single, coherent framework. It uses ecological production functions to inform an economic model consistent with the utility-maximizing decisions of a potentially risk-averse private landowner. We demonstrate the salience and applicability of the framework using data from an experimental grassland to estimate production relationships for hay and carbon storage. For that case, our results suggest that even a risk-neutral, profit-maximizing landowner would favor a highly diverse mix of species, with optimal species richness falling between the low levels currently found in commercial grasslands and the high levels found in natural grasslands.


Asunto(s)
Agricultura/economía , Biodiversidad , Poaceae/crecimiento & desarrollo , Ecología/economía , Ecosistema , Pradera , Modelos Biológicos , Poaceae/clasificación
15.
Bioscience ; 70(12): 1139-1144, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33376456

RESUMEN

Global environmental change challenges humanity because of its broad scale, long-lasting, and potentially irreversible consequences. Key to an effective response is to use an appropriate scientific lens to peer through the mist of uncertainty that threatens timely and appropriate decisions surrounding these complex issues. Identifying such corridors of clarity could help understanding critical phenomena or causal pathways sufficiently well to justify taking policy action. To this end, we suggest four principles: Follow the strongest and most direct path between policy decisions on outcomes, focus on finding sufficient evidence for policy purpose, prioritize no-regrets policies by avoiding options with controversial, uncertain, or immeasurable benefits, aim for getting the big picture roughly right rather than focusing on details.

16.
Proc Natl Acad Sci U S A ; 114(15): 3945-3950, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28351981

RESUMEN

Economic incentives to harvest a species usually diminish as its abundance declines, because harvest costs increase. This prevents harvesting to extinction. A known exception can occur if consumer demand causes a declining species' harvest price to rise faster than costs. This threat may affect rare and valuable species, such as large land mammals, sturgeons, and bluefin tunas. We analyze a similar but underappreciated threat, which arises when the geographic area (range) occupied by a species contracts as its abundance declines. Range contractions maintain the local densities of declining populations, which facilitates harvesting to extinction by preventing abundance declines from causing harvest costs to rise. Factors causing such range contractions include schooling, herding, or flocking behaviors-which, ironically, can be predator-avoidance adaptations; patchy environments; habitat loss; and climate change. We use a simple model to identify combinations of range contractions and price increases capable of causing extinction from profitable overharvesting, and we compare these to an empirical review. We find that some aquatic species that school or forage in patchy environments experience sufficiently severe range contractions as they decline to allow profitable harvesting to extinction even with little or no price increase; and some high-value declining aquatic species experience severe price increases. For terrestrial species, the data needed to evaluate our theory are scarce, but available evidence suggests that extinction-enabling range contractions may be common among declining mammals and birds. Thus, factors causing range contraction as abundance declines may pose unexpectedly large extinction risks to harvested species.


Asunto(s)
Extinción Biológica , Explotaciones Pesqueras/economía , Modelos Biológicos , Animales , Costos y Análisis de Costo , Ecosistema , Densidad de Población
17.
Proc Natl Acad Sci U S A ; 114(7): 1601-1606, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28137858

RESUMEN

Recent expansion of the scale of human activities poses severe threats to Earth's life-support systems. Increasingly, protected areas (PAs) are expected to serve dual goals: protect biodiversity and secure ecosystem services. We report a nationwide assessment for China, quantifying the provision of threatened species habitat and four key regulating services-water retention, soil retention, sandstorm prevention, and carbon sequestration-in nature reserves (the primary category of PAs in China). We find that China's nature reserves serve moderately well for mammals and birds, but not for other major taxa, nor for these key regulating ecosystem services. China's nature reserves encompass 15.1% of the country's land surface. They capture 17.9% and 16.4% of the entire habitat area for threatened mammals and birds, but only 13.1% for plants, 10.0% for amphibians, and 8.5% for reptiles. Nature reserves encompass only 10.2-12.5% of the source areas for the four key regulating services. They are concentrated in western China, whereas much threatened species' habitat and regulating service source areas occur in eastern provinces. Our analysis illuminates a strategy for greatly strengthening PAs, through creating the first comprehensive national park system of China. This would encompass both nature reserves, in which human activities are highly restricted, and a new category of PAs for ecosystem services, in which human activities not impacting key services are permitted. This could close the gap in a politically feasible way. We also propose a new category of PAs globally, for sustaining the provision of ecosystems services and achieving sustainable development goals.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/estadística & datos numéricos , Ecosistema , Anfibios/crecimiento & desarrollo , Animales , Aves/crecimiento & desarrollo , China , Especies en Peligro de Extinción , Geografía , Actividades Humanas , Humanos , Mamíferos/crecimiento & desarrollo , Desarrollo de la Planta , Reptiles/crecimiento & desarrollo , Suelo
18.
Proc Natl Acad Sci U S A ; 114(44): 11645-11650, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29078344

RESUMEN

Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify "natural climate solutions" (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS-when constrained by food security, fiber security, and biodiversity conservation-is 23.8 petagrams of CO2 equivalent (PgCO2e) y-1 (95% CI 20.3-37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO2e y-1) represents cost-effective climate mitigation, assuming the social cost of CO2 pollution is ≥100 USD MgCO2e-1 by 2030. Natural climate solutions can provide 37% of cost-effective CO2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO2-1 Most NCS actions-if effectively implemented-also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change.

19.
J Environ Manage ; 233: 30-38, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30554022

RESUMEN

A central challenge in the Mississippi River Basin is how to continue to support profitable agricultural production, provide water supply, flood control, transportation, and other benefits, while reducing the current burden of environmental degradation. Several practices have been shown to reduce nutrient runoff and water pollution, and improve soil fertility, while often yielding profits for farmers. Yet many of these beneficial practices remain underutilized. Participants at an expert workshop identified five candidate financial mechanisms that could increase adoption of these beneficial farming practices in four focal Midwest states in the next five years: crop insurance premium subsidies, transformation of the private service provider business model, expansion and targeting of 2019 U.S. Farm Bill funding, development of new state funds, and direction of post-disaster federal funds towards habitat restoration, particularly in floodplains. This study provides rough approximations of the change in nutrient runoff and greenhouse gas (GHG) emissions, the annualized costs, and the nutrient and GHG reductions per dollar likely to result from deployment of each financial mechanism. Based upon these approximations, the adoption of these programs could reduce annual nitrate flows at the outlet of the Ohio and Upper Mississippi River Basins by 25%, surpassing the intermediate 2025 target (20% reduction) and achieving more than half of the long-term target (45% reduction) set by the Mississippi River/Gulf of Mexico Hypoxia Task Force. These approximations also illustrate that these five mechanisms could provide the same GHG reductions (∼43 Tg CO2e yr-1) as taking 12 coal-fired energy plants offline. The total cost of these five financial mechanisms is estimated at ∼$2.6 billion, or 64 g of nitrates and ∼17 kg of CO2e per dollar spent. These proposed solutions all face political, financial, cultural or institutional challenges, but with industry support, creative political action, and continued communication of both private and public benefits, they can create meaningful nutrient reductions and rebuild soils by 2022.


Asunto(s)
Motivación , Suelo , Golfo de México , Mississippi , Ohio
20.
Bioscience ; 68(3): 182-193, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29988312

RESUMEN

Sustainability challenges for nature and people are complex and interconnected, such that effective solutions require approaches and a common theory of change that bridge disparate disciplines and sectors. Causal chains offer promising approaches to achieving an integrated understanding of how actions affect ecosystems, the goods and services they provide, and ultimately, human well-being. Although causal chains and their variants are common tools across disciplines, their use remains highly inconsistent, limiting their ability to support and create a shared evidence base for joint actions. In this article, we present the foundational concepts and guidance of causal chains linking disciplines and sectors that do not often intersect to elucidate the effects of actions on ecosystems and society. We further discuss considerations for establishing and implementing causal chains, including nonlinearity, trade-offs and synergies, heterogeneity, scale, and confounding factors. Finally, we highlight the science, practice, and policy implications of causal chains to address real-world linked human-nature challenges.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA