Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35956929

RESUMEN

A new, simple and sensitive method for isolating nine compounds from the bisphenol group (analogues: A, B, C, E, F, G, Cl2, Z, AP) based on one-step liquid-liquid microextraction with in situ acylation followed by gas chromatography-mass spectrometry was developed and validated using influent and effluent wastewaters. The chemometric approach based on the Taguchi method was used to optimize the main conditions of simultaneous extraction and derivatization. The recoveries of the proposed procedure ranged from 85 to 122%, and the repeatability expressed by the coefficient of variation did not exceed 8%. The method's limits of detection were in the range of 0.4-64 ng/L, and the method's limits of quantification ranged from 1.3 to 194 ng/L. The developed method was used to determine the presence of the tested compounds in wastewater from a municipal wastewater treatment plant located in northeastern Poland. From this sample, eight analytes were detected. Concentrations of bisphenol A of 400 ng/L in influent and 100 ng/L in effluent were recorded, whereas other bisphenols reached 67 and 50 ng/L for influent and effluent, respectively. The removal efficiency of bisphenol analogues in the tested wastewater treatment plant ranged from 7 to approximately 88%.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Compuestos de Bencidrilo , Cromatografía de Gases y Espectrometría de Masas/métodos , Fenoles , Aguas Residuales/química , Agua/análisis , Contaminantes Químicos del Agua/análisis
2.
Int J Mol Sci ; 22(6)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33802057

RESUMEN

Heavy metals polluting the 100-year-old waste heap in Boleslaw (Poland) are acting as a natural selection factor and may contribute to adaptations of organisms living in this area, including Trifolium repens and its root nodule microsymbionts-rhizobia. Exopolysaccharides (EPS), exuded extracellularly and associated with bacterial cell walls, possess variable structures depending on environmental conditions; they can bind metals and are involved in biofilm formation. In order to examine the effects of long-term exposure to metal pollution on EPS structure and biofilm formation of rhizobia, Rhizobium leguminosarum bv. trifolii strains originating from the waste heap area and a non-polluted reference site were investigated for the characteristics of the sugar fraction of their EPS using gas chromatography mass-spectrometry and also for biofilm formation and structural characteristics using confocal laser scanning microscopy under control conditions as well as when exposed to toxic concentrations of zinc, lead, and cadmium. Significant differences in EPS structure, biofilm thickness, and ratio of living/dead bacteria in the biofilm were found between strains originating from the waste heap and from the reference site, both without exposure to metals and under metal exposure. Received results indicate that studied rhizobia can be assumed as potentially useful in remediation processes.


Asunto(s)
Biopelículas , Metales Pesados/metabolismo , Polisacáridos Bacterianos/metabolismo , Rhizobium leguminosarum/fisiología , Contaminantes del Suelo/metabolismo , Trifolium/microbiología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo
3.
Sci Rep ; 14(1): 15898, 2024 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987638

RESUMEN

Research was carried out on the removal of a group of six contaminants of emerging concern: bisphenol A, N,N-diethyl-m-toluamide, diethylstilbestrol, triclosan, estrone and estradiol from the water matrix during contact with small floating macrophytes Wolffia arrhiza and Lemna minor. The optimal conditions for the process, such as pH, light exposure per day, and plant mass, were determined using the design of experiments chemometric approach based on central composite design. Experiments conducted under the designated optimal conditions showed that after 7 days, the removal efficiency equals 88-98% in the case of W. arrhiza and 87-97% in the case of L. minor, while after 14 days of the experiment, these values are 93-99.6% and 89-98%, respectively. The primary mechanism responsible for removing CECs is the plant uptake, with the mean uptake rate constant equal to 0.299 day-1 and 0.277 day-1 for W. arrhiza and L. minor, respectively. Experiments conducted using municipal wastewater as a sample matrix showed that the treatment efficiency remains high (the average values 84% and 75%; in the case of raw wastewater, 93% and 89%, and in the case of treated wastewater, for W. arrhiza and L. minor, respectively). Landfill leachate significantly reduces plants' ability to remove pollutants (the average removal efficiency equals 59% and 56%, for W. arrhiza and L. minor, respectively).


Asunto(s)
Araceae , Contaminantes Químicos del Agua , Araceae/metabolismo , Araceae/química , Contaminantes Químicos del Agua/análisis , Biodegradación Ambiental , Aguas Residuales/química , Purificación del Agua/métodos
4.
Sci Total Environ ; 951: 175387, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39127214

RESUMEN

Benzotriazoles (BTRs) and bisphenols (BPs), categorized as contaminants of emerging concern (CECs), pose significant risks to human health and ecosystems due to their endocrine-disrupting properties and environmental persistence. This study investigates the occurrence and behavior of nine BTRs and ten BPs in wastewater generated in a large-scale meat processing plant, evaluating the effectiveness of a modern mechanical-biological industrial on-site treatment plant in removing these contaminants, and based on the concentration levels from eleven sampling points at different stages of the treatment process. The method used to determine these micropollutants' concentration was ultrasound-assisted emulsification-microextraction for analytes isolation and gas chromatography-mass spectrometry for detection (USAEME-GC/MS). The results indicate that the rigorous quality control processes in the meat processing facility effectively limit the presence of these micropollutants, especially concerning BPs, which are absent or below detection limits in raw wastewater. While the concentrations of some of these micropollutants increased at different points in the treatment process, these values were relatively low, typically below one microgram per liter. Among the compounds analyzed, the only one present after completing the treatment was 5Cl-BTR (maximum concentration: 3007 ng/L), and these contamination levels are around seven times lower than the reference value associated with non-cancer health risk for drinking water. This study contributes to understanding these CECs in industrial wastewater and highlights the importance of effective treatment systems for environmental protection.


Asunto(s)
Compuestos de Bencidrilo , Fenoles , Triazoles , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Aguas Residuales/química , Fenoles/análisis , Triazoles/análisis , Eliminación de Residuos Líquidos/métodos , Compuestos de Bencidrilo/análisis , Monitoreo del Ambiente , Industria de Procesamiento de Alimentos , Disruptores Endocrinos/análisis , Cromatografía de Gases y Espectrometría de Masas , Residuos Industriales/análisis
5.
Environ Pollut ; 332: 121982, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37301460

RESUMEN

Phytoremediation of benzotriazoles (BTR) from waters by floating macrophytes is not well understood, but it seems to have the potential to be used in conjunction with conventional wastewater treatment plants. The effectiveness of removing four compounds from the benzotriazole group by floating plants Spirodela polyrhiza (L.) Schleid. And Azolla caroliniana Willd. From the model solution, was studied. The observed decrease in the concentration of studied compounds was in the range 70.5%-94.5% using S. polyrhiza, and from 88.3% to 96.2% for A. caroliniana. It was determined using chemometric methods that the effectiveness of the phytoremediation process is mainly influenced by three parameters: exposure time to light, pH of the model solution and the mass of plants. Using the design of experiments (DoE) chemometric approach, the optimal conditions for removing BTR were selected: plant weight 2.5 g and 2 g, light exposure 16 h and 10 h, and pH 9 and pH 5 for S. polyrhiza and A. caroliniana, respectively. Studies on the mechanisms of BTR removal have shown that the reduction in concentration is mainly due to the process of plant uptake. Toxicity studies have proved that the tested BTR affected the growth of S. polyrhiza and A. caroliniana and induced changes in the levels of chlorophyllides, chlorophylls as well as carotenoids. More dramatic loss in plant biomass and photosynthetic pigment contents was observed in A. caroliniana cultures exposed to BTR.


Asunto(s)
Araceae , Helechos , Biodegradación Ambiental , Triazoles
6.
Sci Total Environ ; 847: 157571, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35882328

RESUMEN

In the presented work, phytoremediation with the use of floating plant Wolffia arrhiza (L.) Horkel ex Wimm. was proposed as a method of removing the selected benzotriazoles (BTRs): 1H-benzotriazole (1H-BTR), 4-methyl-1H-benzotriazole (4M-BTR), 5-methyl-1H-benzotriazole (5M-BTR) and 5-chlorobenzotriazole (5Cl-BTR) from water. The efficiency of phytoremediation depends on three factors: daily time of exposure to light, pH of the model solution, and the amount of plans. Using a design of experiment (DoE) methods the following optimal values were selected: plant amount 1.8 g, light exposure 13 h and pH 7 per 100 mL of the model solution. It was found that the loss of BTRs in optimal conditions ranged from 92 to 100 % except for 4M-BTR, for which only 23 % of removal was achieved after 14 days of cultivation of W. arrhiza. The half-life values for studied compounds ranged from 0.98 days for 5Cl-BTR to 36.19 for 4M-BTR. The observed rapid vanishing of 5M-BTR is supposed by the simultaneous transformation of 5M-BTR into 4M-BTR. The detailed study of BTRs degradation pointed that the plant uptake is mainly responsible for the benzotriazoles concentration decrease. Toxicity tests showed that the tested organic compounds induce oxidative stress in W. arrhiza, which manifested among others, in reduced levels of chlorophyll in cultures with benzotriazoles compared to control.


Asunto(s)
Araceae , Agua , Biodegradación Ambiental , Clorofila , Triazoles
7.
Sci Total Environ ; 790: 148195, 2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34380254

RESUMEN

In recent years, there has been increasing interest in using of advanced oxidation processes in water and wastewater decontamination. As a new oxidants peracids, mainly peracetic acid (PAA) and peracid salts, i.e. peroxymonosulfate (PMS) and persulfate (PS) are used. The degradation process of organic compounds takes place with the participation of radicals, including hydroxyl (•OH) and sulfate (SO4•-) radicals derived from the peracids activation processes. Peracids can be activated in homogeneous systems (UV radiation, d-electron metal ions, e.g. Fe2+, Co2+, Mn2+, base, ozonolysis, thermolysis, radiolysis), or using heterogeneous activation (metals with zero oxidation state, metal oxides, quinones, activated carbon, semiconductors). As a result of oxidation, products of a lower mass than the parent compounds, less toxic, and more susceptible to biodegradation are formed. An important task is to investigate the effect of the peracid activation method and matrix composition on the efficiency of contamination removal. The article presents the latest information about the application of peracids in the removal of organic micropollutants of emerging concern (mainly focuses on endocrine disrupted compounds). The most important information on peracetic acid, peroxymonosulfate and persulfate salts, and methods of their activation are presented. Current uses of these oxidants in organic micropollutants removal are also described. Information was collected on the factors influencing the oxidation process and the effectiveness of pollutant removal. This paper compares PAA, PMS and PS-based processes for the first time in terms of kinetics and efficiency.


Asunto(s)
Ácido Peracético , Contaminantes Químicos del Agua , Oxidantes , Oxidación-Reducción , Peróxidos , Sales (Química) , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA