Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
ACS Nano ; 16(1): 306-316, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34957816

RESUMEN

Silica nanoparticles (SiNP) trigger a range of innate immune responses in relevant essential organs, such as the liver and the lungs. Inflammatory reactions, including NLRP3 inflammasome activation, have been linked to particulate materials; however, the molecular mechanisms and key actors remain elusive. Although many receptors, including several scavenger receptors, were suggested to participate in SiNP cellular uptake, mechanistic evidence of their role on innate immunity is lacking. Here we present an atomic force microscopy-based approach to physico-mechanically map the specific interaction occurring between nanoparticles and scavenger receptor A1 (SRA1) in vitro on living lung epithelial cells. We find that SiNP recognition by SRA1 on human macrophages plays a key role in mediating NLRP3 inflammasome activation, and we identify cellular mechanical changes as clear indicators of inflammasome activation in human macrophages, greatly advancing our knowledge on the interplay among nanomaterials and innate immunity.


Asunto(s)
Inflamasomas , Nanopartículas , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR , Macrófagos/metabolismo , Inmunidad Innata , Dióxido de Silicio/metabolismo
2.
Antioxidants (Basel) ; 10(12)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34943005

RESUMEN

Human peroxiredoxin-5 (PRDX5) is a unique redox-sensitive protein that plays a dual role in brain ischemia-reperfusion injury. While intracellular PRDX5 has been reported to act as a neuroprotective antioxidative enzyme by scavenging peroxides, once released extracellularly from necrotic brain cells, the protein aggravates neural cell death by inducing expression of proinflammatory cytokines in macrophages through activation of Toll-like receptor (TLR) 2 (TLR2) and 4 (TLR4). Although recent evidence showed that PRDX5 was able to interact directly with TLR4, little is known regarding the role of the cysteine redox state of PRDX5 on its DAMP function. To gain insights into the role of PRDX5 redox-active cysteine residues in the TLR4-dependent proinflammatory activity of the protein, we used a recombinant human PRDX5 in the disulfide (oxidized) form and a mutant version lacking the peroxidatic cysteine, as well as chemically reduced and hyperoxidized PRDX5 proteins. We first analyzed the oxidation state and oligomerization profile by Western blot, mass spectrometry, and SEC-MALS. Using ELISA, we demonstrate that the disulfide bridge between the enzymatic cysteines is required to allow improved TLR4-dependent IL-8 secretion. Moreover, single-molecule force spectroscopy experiments revealed that TLR4 alone is not sufficient to discriminate the different PRDX5 redox forms. Finally, flow cytometry binding assays show that disulfide PRDX5 has a higher propensity to bind to the surface of living TLR4-expressing cells than the mutant protein. Taken together, these results demonstrate the importance of the redox state of PRDX5 cysteine residues on TLR4-induced inflammation.

3.
Nat Commun ; 12(1): 2149, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846319

RESUMEN

Reovirus infection requires the concerted action of viral and host factors to promote cell entry. After interaction of reovirus attachment protein σ1 with cell-surface carbohydrates and proteinaceous receptors, additional host factors mediate virus internalization. In particular, ß1 integrin is required for endocytosis of reovirus virions following junctional adhesion molecule A (JAM-A) binding. While integrin-binding motifs in the surface-exposed region of reovirus capsid protein λ2 are thought to mediate integrin interaction, evidence for direct ß1 integrin-reovirus interactions and knowledge of how integrins function to mediate reovirus entry is lacking. Here, we use single-virus force spectroscopy and confocal microscopy to discover a direct interaction between reovirus and ß1 integrins. Comparison of interactions between reovirus disassembly intermediates as well as mutants and ß1 integrin show that λ2 is the integrin ligand. Finally, using fluidic force microscopy, we demonstrate a functional role for ß1 integrin interaction in promoting clathrin recruitment to cell-bound reovirus. Our study demonstrates a direct interaction between reovirus and ß1 integrins and offers insights into the mechanism of reovirus cell entry. These results provide new perspectives for the development of efficacious antiviral therapeutics and the engineering of improved viral gene delivery and oncolytic vectors.


Asunto(s)
Clatrina/metabolismo , Interacciones Huésped-Patógeno , Integrina beta1/metabolismo , Reoviridae/fisiología , Animales , Sitios de Unión , Cápside/metabolismo , Cationes , Línea Celular , Membrana Celular/metabolismo , Endocitosis , Cinética , Ratones , Ácido N-Acetilneuramínico/metabolismo , Mutación Puntual/genética , Unión Proteica , Termodinámica , Proteínas Virales/metabolismo , Virión/metabolismo
4.
Nanoscale Horiz ; 3(3): 293-304, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32254077

RESUMEN

Red blood cells feature remarkable mechanical properties while navigating through microcirculation vessels and during spleen filtration. An unusual combination of plasma membrane and cytoskeleton physical properties allows red blood cells to undergo extensive deformation. Here we used atomic force microscopy multiparametric imaging to probe how cellular organization influences nanoscale and global mechanical properties of cells in both physiological and pathological conditions. Our data obtained in native conditions confirmed that, compared to healthy cells, cells from patients with hereditary spherocytosis are stiffer. Through vertical segmentation of the cell elasticity, we found that healthy and pathological cells display nanoscale architecture with an increasing stiffness along the direction of the applied force. By decoupling the mechanical response of the plasma membrane from its underlying cytoskeleton, we find that both components show altered properties in pathological conditions. Nanoscale multiparametric imaging also revealed lipid domains that exhibit differential mechanical properties than the bulk membrane in both healthy and pathological conditions. Thanks to correlated AFM-fluorescence imaging, we identified submicrometric sphingomyelin-enriched lipid domains of variable stiffness at the red blood cell surface. Our experiments provide novel insights into the interplay between nanoscale organization of red blood cell plasma membrane and their nanomechanical properties. Overall, this work contributes to a better understanding of the complex relationship between cellular nanoscale organization, cellular nanomechanics and how this 3D organization is altered in pathological conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA