Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 630(8016): 401-411, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811727

RESUMEN

Apes possess two sex chromosomes-the male-specific Y chromosome and the X chromosome, which is present in both males and females. The Y chromosome is crucial for male reproduction, with deletions being linked to infertility1. The X chromosome is vital for reproduction and cognition2. Variation in mating patterns and brain function among apes suggests corresponding differences in their sex chromosomes. However, owing to their repetitive nature and incomplete reference assemblies, ape sex chromosomes have been challenging to study. Here, using the methodology developed for the telomere-to-telomere (T2T) human genome, we produced gapless assemblies of the X and Y chromosomes for five great apes (bonobo (Pan paniscus), chimpanzee (Pan troglodytes), western lowland gorilla (Gorilla gorilla gorilla), Bornean orangutan (Pongo pygmaeus) and Sumatran orangutan (Pongo abelii)) and a lesser ape (the siamang gibbon (Symphalangus syndactylus)), and untangled the intricacies of their evolution. Compared with the X chromosomes, the ape Y chromosomes vary greatly in size and have low alignability and high levels of structural rearrangements-owing to the accumulation of lineage-specific ampliconic regions, palindromes, transposable elements and satellites. Many Y chromosome genes expand in multi-copy families and some evolve under purifying selection. Thus, the Y chromosome exhibits dynamic evolution, whereas the X chromosome is more stable. Mapping short-read sequencing data to these assemblies revealed diversity and selection patterns on sex chromosomes of more than 100 individual great apes. These reference assemblies are expected to inform human evolution and conservation genetics of non-human apes, all of which are endangered species.


Asunto(s)
Hominidae , Cromosoma X , Cromosoma Y , Animales , Femenino , Masculino , Gorilla gorilla/genética , Hominidae/genética , Hominidae/clasificación , Hylobatidae/genética , Pan paniscus/genética , Pan troglodytes/genética , Filogenia , Pongo abelii/genética , Pongo pygmaeus/genética , Telómero/genética , Cromosoma X/genética , Cromosoma Y/genética , Evolución Molecular , Variaciones en el Número de Copia de ADN/genética , Humanos , Especies en Peligro de Extinción , Estándares de Referencia
2.
Immunity ; 47(5): 990-1003.e9, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29166592

RESUMEN

Understanding how broadly neutralizing antibodies (bnAbs) to HIV envelope (Env) develop during natural infection can help guide the rational design of an HIV vaccine. Here, we described a bnAb lineage targeting the Env V2 apex and the Ab-Env co-evolution that led to development of neutralization breadth. The lineage Abs bore an anionic heavy chain complementarity-determining region 3 (CDRH3) of 25 amino acids, among the shortest known for this class of Abs, and achieved breadth with only 10% nucleotide somatic hypermutation and no insertions or deletions. The data suggested a role for Env glycoform heterogeneity in the activation of the lineage germline B cell. Finally, we showed that localized diversity at key V2 epitope residues drove bnAb maturation toward breadth, mirroring the Env evolution pattern described for another donor who developed V2-apex targeting bnAbs. Overall, these findings suggest potential strategies for vaccine approaches based on germline-targeting and serial immunogen design.


Asunto(s)
Anticuerpos Neutralizantes/fisiología , Linaje de la Célula , Anticuerpos Anti-VIH/fisiología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Vacunas contra el SIDA/inmunología , Anticuerpos Neutralizantes/química , Regiones Determinantes de Complementariedad , Anticuerpos Anti-VIH/química , Humanos
3.
Nature ; 530(7588): 51-56, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26814962

RESUMEN

Lymphoid tissue is a key reservoir established by HIV-1 during acute infection. It is a site associated with viral production, storage of viral particles in immune complexes, and viral persistence. Although combinations of antiretroviral drugs usually suppress viral replication and reduce viral RNA to undetectable levels in blood, it is unclear whether treatment fully suppresses viral replication in lymphoid tissue reservoirs. Here we show that virus evolution and trafficking between tissue compartments continues in patients with undetectable levels of virus in their bloodstream. We present a spatial and dynamic model of persistent viral replication and spread that indicates why the development of drug resistance is not a foregone conclusion under conditions in which drug concentrations are insufficient to completely block virus replication. These data provide new insights into the evolutionary and infection dynamics of the virus population within the host, revealing that HIV-1 can continue to replicate and replenish the viral reservoir despite potent antiretroviral therapy.


Asunto(s)
Portador Sano/tratamiento farmacológico , Portador Sano/virología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH-1/crecimiento & desarrollo , Carga Viral , Replicación Viral , Fármacos Anti-VIH/administración & dosificación , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Portador Sano/sangre , Farmacorresistencia Viral/efectos de los fármacos , Infecciones por VIH/sangre , VIH-1/efectos de los fármacos , VIH-1/genética , VIH-1/aislamiento & purificación , Haplotipos/efectos de los fármacos , Humanos , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/virología , Modelos Biológicos , Datos de Secuencia Molecular , Filogenia , Selección Genética/efectos de los fármacos , Análisis de Secuencia de ADN , Análisis Espacio-Temporal , Factores de Tiempo , Carga Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos
5.
J Infect Dis ; 215(10): 1506-1513, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28419276

RESUMEN

Background: Investigations into which human immunodeficiency virus type 1 (HIV-1) sequence features may be selected for transmission during sexual exposure have been hampered by the small number of characterized transmission pairs in individual studies. Methods: To boost statistical power to detect differences in glycosylation, length, and electrical charge in the HIV-1 V1-V4 coding region, we reanalyzed all available 2485 env sequences derived from 114 subjects representing 58 transmission pairs from previous studies using mixed-effects linear regression and an approach to approximate the unobserved transmitted virus. Results: The recipient partner had a shorter V1-V4 region and fewer potential N-linked glycosylation sites (PNGS) than sequences from the source partner. We also detected a trend toward more PNGS and lower isoelectric points in transmitted sequences with source partner and the evolutionary tendency to shorten V1-V4 sequences, reduce the number of PNGS, and lower isoelectric points in the recipient following transmission. Conclusions: By using all available well-characterized env sequences from transmission pairs via sexual exposure, we were able to identify several important virologic factors that may be important in the development of biomedical preventive interventions.


Asunto(s)
Proteína gp120 de Envoltorio del VIH/genética , Infecciones por VIH/transmisión , Infecciones por VIH/virología , VIH-1/genética , Fragmentos de Péptidos/genética , Análisis de Varianza , Evolución Molecular , Glicosilación , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/metabolismo , VIH-1/metabolismo , VIH-1/patogenicidad , Humanos
6.
PLoS Comput Biol ; 11(2): e1003973, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25646817

RESUMEN

The RV144 clinical trial showed the partial efficacy of a vaccine regimen with an estimated vaccine efficacy (VE) of 31% for protecting low-risk Thai volunteers against acquisition of HIV-1. The impact of vaccine-induced immune responses can be investigated through sieve analysis of HIV-1 breakthrough infections (infected vaccine and placebo recipients). A V1/V2-targeted comparison of the genomes of HIV-1 breakthrough viruses identified two V2 amino acid sites that differed between the vaccine and placebo groups. Here we extended the V1/V2 analysis to the entire HIV-1 genome using an array of methods based on individual sites, k-mers and genes/proteins. We identified 56 amino acid sites or "signatures" and 119 k-mers that differed between the vaccine and placebo groups. Of those, 19 sites and 38 k-mers were located in the regions comprising the RV144 vaccine (Env-gp120, Gag, and Pro). The nine signature sites in Env-gp120 were significantly enriched for known antibody-associated sites (p = 0.0021). In particular, site 317 in the third variable loop (V3) overlapped with a hotspot of antibody recognition, and sites 369 and 424 were linked to CD4 binding site neutralization. The identified signature sites significantly covaried with other sites across the genome (mean = 32.1) more than did non-signature sites (mean = 0.9) (p < 0.0001), suggesting functional and/or structural relevance of the signature sites. Since signature sites were not preferentially restricted to the vaccine immunogens and because most of the associations were insignificant following correction for multiple testing, we predict that few of the genetic differences are strongly linked to the RV144 vaccine-induced immune pressure. In addition to presenting results of the first complete-genome analysis of the breakthrough infections in the RV144 trial, this work describes a set of statistical methods and tools applicable to analysis of breakthrough infection genomes in general vaccine efficacy trials for diverse pathogens.


Asunto(s)
Vacunas contra el SIDA/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/genética , VIH-1/inmunología , Proteínas del Virus de la Inmunodeficiencia Humana/química , Vacunas contra el SIDA/genética , Sitios de Unión/genética , Genoma Viral/genética , Infecciones por VIH/prevención & control , Proteínas del Virus de la Inmunodeficiencia Humana/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Alineación de Secuencia , Análisis de Secuencia de Proteína
7.
Proc Natl Acad Sci U S A ; 108(46): 18732-6, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22065772

RESUMEN

Batrachochytrium dendrobatidis (Bd) is a globally ubiquitous fungal infection that has emerged to become a primary driver of amphibian biodiversity loss. Despite widespread effort to understand the emergence of this panzootic, the origins of the infection, its patterns of global spread, and principle mode of evolution remain largely unknown. Using comparative population genomics, we discovered three deeply diverged lineages of Bd associated with amphibians. Two of these lineages were found in multiple continents and are associated with known introductions by the amphibian trade. We found that isolates belonging to one clade, the global panzootic lineage (BdGPL) have emerged across at least five continents during the 20th century and are associated with the onset of epizootics in North America, Central America, the Caribbean, Australia, and Europe. The two newly identified divergent lineages, Cape lineage (BdCAPE) and Swiss lineage (BdCH), were found to differ in morphological traits when compared against one another and BdGPL, and we show that BdGPL is hypervirulent. BdGPL uniquely bears the hallmarks of genomic recombination, manifested as extensive intergenomic phylogenetic conflict and patchily distributed heterozygosity. We postulate that contact between previously genetically isolated allopatric populations of Bd may have allowed recombination to occur, resulting in the generation, spread, and invasion of the hypervirulent BdGPL leading to contemporary disease-driven losses in amphibian biodiversity.


Asunto(s)
Anfibios/microbiología , Quitridiomicetos/genética , Quitridiomicetos/fisiología , Virulencia , Animales , Biodiversidad , Linaje de la Célula , Variación Genética , Genotipo , Heterocigoto , Homocigoto , Modelos Genéticos , Filogenia , Polimorfismo de Nucleótido Simple , Proteínas Recombinantes/metabolismo , Recombinación Genética
8.
ArXiv ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38947939

RESUMEN

Motivation: Modern molecular sequence analysis increasingly relies on automated and robust software tools for interpretation, annotation, and biological insight. The Analysis of Orthologous Collections (AOC) application automates the identification of genomic sites and species/lineages influenced by natural selection in coding sequence analysis. AOC quantifies different types of selection: negative, diversifying or directional positive, or differential selection between groups of branches. We include all steps necessary to go from unaligned homologous sequences to complete results and interactive visualizations that are designed to aid in the useful interpretation and contextualization. Results: We are motivated by a desire to make evolutionary analyses as simple as possible, and to close the disparity in the literature between genes which draw a significant amount of interest and those that are largely overlooked and underexplored. We believe that such underappreciated and understudied genetic datasets can hold rich biological information and offer substantial insights into the diverse patterns and processes of evolution, especially if domain experts are able to perform the analyses themselves. Availability and implementation: A Snakemake [Mölder et al., 2021] application implementation is publicly available on GitHub at https://github.com/aglucaci/AnalysisOfOrthologousCollections and is accompanied by software documentation and a tutorial.

9.
Science ; 383(6690): eabn3263, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38422184

RESUMEN

Vocal production learning ("vocal learning") is a convergently evolved trait in vertebrates. To identify brain genomic elements associated with mammalian vocal learning, we integrated genomic, anatomical, and neurophysiological data from the Egyptian fruit bat (Rousettus aegyptiacus) with analyses of the genomes of 215 placental mammals. First, we identified a set of proteins evolving more slowly in vocal learners. Then, we discovered a vocal motor cortical region in the Egyptian fruit bat, an emergent vocal learner, and leveraged that knowledge to identify active cis-regulatory elements in the motor cortex of vocal learners. Machine learning methods applied to motor cortex open chromatin revealed 50 enhancers robustly associated with vocal learning whose activity tended to be lower in vocal learners. Our research implicates convergent losses of motor cortex regulatory elements in mammalian vocal learning evolution.


Asunto(s)
Elementos de Facilitación Genéticos , Euterios , Evolución Molecular , Regulación de la Expresión Génica , Corteza Motora , Neuronas Motoras , Proteínas , Vocalización Animal , Animales , Quirópteros/genética , Quirópteros/fisiología , Vocalización Animal/fisiología , Corteza Motora/citología , Corteza Motora/fisiología , Cromatina/metabolismo , Neuronas Motoras/fisiología , Laringe/fisiología , Epigénesis Genética , Genoma , Proteínas/genética , Proteínas/metabolismo , Secuencia de Aminoácidos , Euterios/genética , Euterios/fisiología , Aprendizaje Automático
10.
Viruses ; 15(4)2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37112972

RESUMEN

BACKGROUND: With the approval of the HIV-1 capsid inhibitor, lenacapavir, capsid sequencing will be required for managing lenacapavir-experienced individuals with detectable viremia. Successful sequence interpretation will require examining new capsid sequences in the context of previously published sequence data. METHODS: We analyzed published HIV-1 group M capsid sequences from 21,012 capsid-inhibitor naïve individuals to characterize amino acid variability at each position and influence of subtype and cytotoxic T lymphocyte (CTL) selection pressure. We determined the distributions of usual mutations, defined as amino acid differences from the group M consensus, with a prevalence ≥ 0.1%. Co-evolving mutations were identified using a phylogenetically-informed Bayesian graphical model method. RESULTS: 162 (70.1%) positions had no usual mutations (45.9%) or only conservative usual mutations with a positive BLOSUM62 score (24.2%). Variability correlated independently with subtype-specific amino acid occurrence (Spearman rho = 0.83; p < 1 × 10-9) and the number of times positions were reported to contain an HLA-associated polymorphism, an indicator of CTL pressure (rho = 0.43; p = 0.0002). CONCLUSIONS: Knowing the distribution of usual capsid mutations is essential for sequence quality control. Comparing capsid sequences from lenacapavir-treated and lenacapavir-naïve individuals will enable the identification of additional mutations potentially associated with lenacapavir therapy.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , Cápside/química , VIH-1/genética , VIH-1/química , Aminoácidos/genética , Teorema de Bayes , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Mutación , Proteínas de la Cápside/genética , Proteínas de la Cápside/análisis , Fármacos Anti-VIH/farmacología
11.
bioRxiv ; 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36712007

RESUMEN

Feline Coronaviruses (FCoVs) commonly cause mild enteric infections in felines worldwide (termed Feline Enteric Coronavirus [FECV]), with around 12% developing into deadly Feline Infectious Peritonitis (FIP; Feline Infectious Peritonitis Virus [FIPV]). Genomic differences between FECV and FIPV have been reported, yet the putative genotypic basis of the highly pathogenic phenotype remains unclear. Here, we used state-of-the-art molecular evolutionary genetic statistical techniques to identify and compare differences in natural selection pressure between FECV and FIPV sequences, as well as to identify FIPV and FECV specific signals of positive selection. We analyzed full length FCoV protein coding genes thought to contain mutations associated with FIPV (Spike, ORF3abc, and ORF7ab). We identified two sites exhibiting differences in natural selection pressure between FECV and FIPV: one within the S1/S2 furin cleavage site, and the other within the fusion domain of Spike. We also found 15 sites subject to positive selection associated with FIPV within Spike, 11 of which have not previously been suggested as possibly relevant to FIP development. These sites fall within Spike protein subdomains that participate in host cell receptor interaction, immune evasion, tropism shifts, host cellular entry, and viral escape. There were 14 sites (12 novel) within Spike under positive selection associated with the FECV phenotype, almost exclusively within the S1/S2 furin cleavage site and adjacent C domain, along with a signal of relaxed selection in FIPV relative to FECV, suggesting that furin cleavage functionality may not be needed for FIPV. Positive selection inferred in ORF7b was associated with the FECV phenotype, and included 24 positively selected sites, while ORF7b had signals of relaxed selection in FIPV. We found evidence of positive selection in ORF3c in FCoV wide analyses, but no specific association with the FIPV or FECV phenotype. We hypothesize that some combination of mutations in FECV may contribute to FIP development, and that is unlikely to be one singular "switch" mutational event. This work expands our understanding of the complexities of FIP development and provides insights into how evolutionary forces may alter pathogenesis in coronavirus genomes.

12.
PLoS One ; 17(3): e0261045, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35263335

RESUMEN

As novel SARS-CoV-2 variants with different patterns of spike protein mutations have emerged, the susceptibility of these variants to neutralization by antibodies has been rapidly assessed. However, neutralization data are generated using different approaches and are scattered across different publications making it difficult for these data to be located and synthesized. The Stanford Coronavirus Resistance Database (CoV-RDB; https://covdb.stanford.edu) is designed to house comprehensively curated published data on the neutralizing susceptibility of SARS-CoV-2 variants and spike mutations to monoclonal antibodies (mAbs), convalescent plasma (CP), and vaccinee plasma (VP). As of December 31, 2021, CoV-RDB encompassed 257 publications including 91 (35%) containing 9,070 neutralizing mAb susceptibility results, 131 (51%) containing 16,773 neutralizing CP susceptibility results, and 178 (69%) containing 33,540 neutralizing VP results. The database also records which spike mutations are selected during in vitro passage of SARS-CoV-2 in the presence of mAbs and which emerge in persons receiving mAbs as treatment. The CoV-RDB interface interactively displays neutralizing susceptibility data at different levels of granularity by filtering and/or aggregating query results according to one or more experimental conditions. The CoV-RDB website provides a companion sequence analysis program that outputs information about mutations present in a submitted sequence and that also assists users in determining the appropriate mutation-detection thresholds for identifying non-consensus amino acids. The most recent data underlying the CoV-RDB can be downloaded in its entirety from a GitHub repository in a documented machine-readable format.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/patología , SARS-CoV-2/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , COVID-19/terapia , COVID-19/virología , Bases de Datos Factuales , Humanos , Inmunización Pasiva , Pruebas de Neutralización , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología , Sueroterapia para COVID-19
13.
Cell Stress Chaperones ; 27(4): 309-323, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35678958

RESUMEN

Small heat shock proteins (sHSPs) emerged early in evolution and occur in all domains of life and nearly in all species, including humans. Mutations in four sHSPs (HspB1, HspB3, HspB5, HspB8) are associated with neuromuscular disorders. The aim of this study is to investigate the evolutionary forces shaping these sHSPs during vertebrate evolution. We performed comparative evolutionary analyses on a set of orthologous sHSP sequences, based on the ratio of non-synonymous: synonymous substitution rates for each codon. We found that these sHSPs had been historically exposed to different degrees of purifying selection, decreasing in this order: HspB8 > HspB1, HspB5 > HspB3. Within each sHSP, regions with different degrees of purifying selection can be discerned, resulting in characteristic selective pressure profiles. The conserved α-crystallin domains were exposed to the most stringent purifying selection compared to the flanking regions, supporting a 'dimorphic pattern' of evolution. Thus, during vertebrate evolution the different sequence partitions were exposed to different and measurable degrees of selective pressures. Among the disease-associated mutations, most are missense mutations primarily in HspB1 and to a lesser extent in the other sHSPs. Our data provide an explanation for this disparate incidence. Contrary to the expectation, most missense mutations cause dominant disease phenotypes. Theoretical considerations support a connection between the historic exposure of these sHSP genes to a high degree of purifying selection and the unusual prevalence of genetic dominance of the associated disease phenotypes. Our study puts the genetics of inheritable sHSP-borne diseases into the context of vertebrate evolution.


Asunto(s)
Proteínas de Choque Térmico , Chaperonas Moleculares , alfa-Cristalinas , Animales , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico Pequeñas/genética , Humanos , Chaperonas Moleculares/genética , Mutación , Vertebrados/genética , Cadena B de alfa-Cristalina , alfa-Cristalinas/genética
14.
Viruses ; 14(5)2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35632597

RESUMEN

A canine coronavirus (CCoV) has now been reported from two independent human samples from Malaysia (respiratory, collected in 2017-2018; CCoV-HuPn-2018) and Haiti (urine, collected in 2017); these two viruses were nearly genetically identical. In an effort to identify any novel adaptations associated with this apparent shift in tropism we carried out detailed evolutionary analyses of the spike gene of this virus in the context of related Alphacoronavirus 1 species. The spike 0-domain retains homology to CCoV2b (enteric infections) and Transmissible Gastroenteritis Virus (TGEV; enteric and respiratory). This domain is subject to relaxed selection pressure and an increased rate of molecular evolution. It contains unique amino acid substitutions, including within a region important for sialic acid binding and pathogenesis in TGEV. Overall, the spike gene is extensively recombinant, with a feline coronavirus type II strain serving a prominent role in the recombinant history of the virus. Molecular divergence time for a segment of the gene where temporal signal could be determined, was estimated at around 60 years ago. We hypothesize that the virus had an enteric origin, but that it may be losing that particular tropism, possibly because of mutations in the sialic acid binding region of the spike 0-domain.


Asunto(s)
Coronavirus Canino , Animales , Gatos , Perros , Ácido N-Acetilneuramínico , Glicoproteína de la Espiga del Coronavirus/genética , Tropismo , Zoonosis
15.
BMJ Glob Health ; 7(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35296465

RESUMEN

Two years after the start of the COVID-19 pandemic, key questions about the emergence of its aetiological agent (SARS-CoV-2) remain a matter of considerable debate. Identifying when SARS-CoV-2 began spreading among people is one of those questions. Although the current canonically accepted timeline hypothesises viral emergence in Wuhan, China, in November or December 2019, a growing body of diverse studies provides evidence that the virus may have been spreading worldwide weeks, or even months, prior to that time. However, the hypothesis of earlier SARS-CoV-2 circulation is often dismissed with prejudicial scepticism and experimental studies pointing to early origins are frequently and speculatively attributed to false-positive tests. In this paper, we critically review current evidence that SARS-CoV-2 had been circulating prior to December of 2019, and emphasise how, despite some scientific limitations, this hypothesis should no longer be ignored and considered sufficient to warrant further larger-scale studies to determine its veracity.


Asunto(s)
COVID-19 , SARS-CoV-2 , China/epidemiología , Humanos , Pandemias
16.
Mol Biol Evol ; 27(3): 520-36, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19864470

RESUMEN

Over time, natural selection molds every gene into a unique mosaic of sites evolving rapidly or resisting change-an "evolutionary fingerprint" of the gene. Aspects of this evolutionary fingerprint, such as the site-specific ratio of nonsynonymous to synonymous substitution rates (dN/dS), are commonly used to identify genetic features of potential biological interest; however, no framework exists for comparing evolutionary fingerprints between genes. We hypothesize that protein-coding genes with similar protein structure and/or function tend to have similar evolutionary fingerprints and that comparing evolutionary fingerprints can be useful for discovering similarities between genes in a way that is analogous to, but independent of, discovery of similarity via sequence-based comparison tools such as Blast. To test this hypothesis, we develop a novel model of coding sequence evolution that uses a general bivariate discrete parameterization of the evolutionary rates. We show that this approach provides a better fit to the data using a smaller number of parameters than existing models. Next, we use the model to represent evolutionary fingerprints as probability distributions and present a methodology for comparing these distributions in a way that is robust against variations in data set size and divergence. Finally, using sequences of three rapidly evolving RNA viruses (HIV-1, hepatitis C virus, and influenza A virus), we demonstrate that genes within the same functional group tend to have similar evolutionary fingerprints. Our framework provides a sound statistical foundation for efficient inference and comparison of evolutionary rate patterns in arbitrary collections of gene alignments, clustering homologous and nonhomologous genes, and investigation of biological and functional correlates of evolutionary rates.


Asunto(s)
Biología Computacional/métodos , Dermatoglifia del ADN/métodos , Evolución Molecular , Genes Virales , Modelos Genéticos , Algoritmos , Animales , Inteligencia Artificial , Análisis por Conglomerados , Codón , Simulación por Computador , Bases de Datos Genéticas , VIH-1/genética , Hepacivirus/genética , Virus de la Influenza A/genética , Mutación , Dinámicas no Lineales , Análisis de Componente Principal , Reproducibilidad de los Resultados , Alineación de Secuencia
17.
J Virol ; 82(11): 5510-8, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18353964

RESUMEN

Following interruption of antiretroviral therapy among individuals with acquired drug resistance, preexisting drug-sensitive virus emerges relatively rapidly. In contrast, wild-type virus is not archived in individuals infected with drug-resistant human immunodeficiency virus (HIV) and thus cannot emerge rapidly in the absence of selective drug pressure. Fourteen recently HIV-infected patients with transmitted drug-resistant virus were followed for a median of 2.1 years after the estimated date of infection (EDI) without receiving antiretroviral therapy. HIV drug resistance and pol replication capacity (RC) in longitudinal plasma samples were assayed. Resistance mutations were characterized as pure populations or mixtures. The mean time to first detection of a mixture of wild-type and drug-resistant viruses was 96 weeks (1.8 years) (95% confidence interval, 48 to 192 weeks) after the EDI. The median time to loss of detectable drug resistance using population-based assays ranged from 4.1 years (conservative estimate) to longer than the lifetime of the individual (less conservative estimate). The transmission of drug-resistant virus was not associated with virus with reduced RC. Sexual transmission of HIV selects for highly fit drug-resistant variants that persist for years. The prolonged persistence of transmitted drug resistance strongly supports the routine use of HIV resistance genotyping for all newly diagnosed individuals.


Asunto(s)
Farmacorresistencia Viral/efectos de los fármacos , Infecciones por VIH/tratamiento farmacológico , Adulto , Fármacos Anti-VIH/uso terapéutico , Evolución Biológica , Epítopos de Linfocito T/inmunología , Genotipo , VIH/efectos de los fármacos , VIH/genética , VIH/inmunología , Infecciones por VIH/inmunología , Humanos , Persona de Mediana Edad , Mutación/genética , Linfocitos T Citotóxicos/inmunología
18.
Methods Mol Biol ; 537: 163-83, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19378144

RESUMEN

Natural selection is a fundamental process affecting all evolving populations. In the simplest case, positive selection increases the frequency of alleles that confer a fitness advantage relative to the rest of the population, or increases its genetic diversity, and negative selection removes those alleles that are deleterious. Codon-based models of molecular evolution are able to infer signatures of selection from alignments of homologous sequences by estimating the relative rates of synonymous (dS) and non-synonymous substitutions (dN). Datamonkey (http://www.datamonkey.org) provides a user-friendly web interface to a wide collection of state-of-the-art statistical techniques for estimating dS and dN and identifying codons and lineages under selection, even in the presence of recombinant sequences.


Asunto(s)
Biología Computacional/métodos , Selección Genética , Análisis de Secuencia de ADN , Programas Informáticos , Secuencia de Bases , Evolución Molecular , Perfilación de la Expresión Génica , Variación Genética , Internet , Datos de Secuencia Molecular , Filogenia , Interfaz Usuario-Computador
19.
PLoS Comput Biol ; 3(1): e11, 2007 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-17238283

RESUMEN

The addition of asparagine (N)-linked polysaccharide chains (i.e., glycans) to the gp120 and gp41 glycoproteins of human immunodeficiency virus type 1 (HIV-1) envelope is not only required for correct protein folding, but also may provide protection against neutralizing antibodies as a "glycan shield." As a result, strong host-specific selection is frequently associated with codon positions where nonsynonymous substitutions can create or disrupt potential N-linked glycosylation sites (PNGSs). Moreover, empirical data suggest that the individual contribution of PNGSs to the neutralization sensitivity or infectivity of HIV-1 may be critically dependent on the presence or absence of other PNGSs in the envelope sequence. Here we evaluate how glycan-glycan interactions have shaped the evolution of HIV-1 envelope sequences by analyzing the distribution of PNGSs in a large-sequence alignment. Using a "covarion"-type phylogenetic model, we find that the rates at which individual PNGSs are gained or lost vary significantly over time, suggesting that the selective advantage of having a PNGS may depend on the presence or absence of other PNGSs in the sequence. Consequently, we identify specific interactions between PNGSs in the alignment using a new paired-character phylogenetic model of evolution, and a Bayesian graphical model. Despite the fundamental differences between these two methods, several interactions are jointly identified by both. Mapping these interactions onto a structural model of HIV-1 gp120 reveals that negative (exclusive) interactions occur significantly more often between colocalized glycans, while positive (inclusive) interactions are restricted to more distant glycans. Our results imply that the adaptive repertoire of alternative configurations in the HIV-1 glycan shield is limited by functional interactions between the N-linked glycans. This represents a potential vulnerability of rapidly evolving HIV-1 populations that may provide useful glycan-based targets for neutralizing antibodies.


Asunto(s)
Evolución Molecular , VIH-1/genética , VIH-1/metabolismo , Polisacáridos/genética , Polisacáridos/metabolismo , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada , Glicosilación , Datos de Secuencia Molecular , Unión Proteica , Mapeo de Interacción de Proteínas , Alineación de Secuencia/métodos , Análisis de Secuencia de Proteína/métodos , Homología de Secuencia de Aminoácido
20.
PLoS Comput Biol ; 3(11): e231, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18039027

RESUMEN

The third variable loop (V3) of the human immunodeficiency virus type 1 (HIV-1) envelope is a principal determinant of antibody neutralization and progression to AIDS. Although it is undoubtedly an important target for vaccine research, extensive genetic variation in V3 remains an obstacle to the development of an effective vaccine. Comparative methods that exploit the abundance of sequence data can detect interactions between residues of rapidly evolving proteins such as the HIV-1 envelope, revealing biological constraints on their variability. However, previous studies have relied implicitly on two biologically unrealistic assumptions: (1) that founder effects in the evolutionary history of the sequences can be ignored, and; (2) that statistical associations between residues occur exclusively in pairs. We show that comparative methods that neglect the evolutionary history of extant sequences are susceptible to a high rate of false positives (20%-40%). Therefore, we propose a new method to detect interactions that relaxes both of these assumptions. First, we reconstruct the evolutionary history of extant sequences by maximum likelihood, shifting focus from extant sequence variation to the underlying substitution events. Second, we analyze the joint distribution of substitution events among positions in the sequence as a Bayesian graphical model, in which each branch in the phylogeny is a unit of observation. We perform extensive validation of our models using both simulations and a control case of known interactions in HIV-1 protease, and apply this method to detect interactions within V3 from a sample of 1,154 HIV-1 envelope sequences. Our method greatly reduces the number of false positives due to founder effects, while capturing several higher-order interactions among V3 residues. By mapping these interactions to a structural model of the V3 loop, we find that the loop is stratified into distinct evolutionary clusters. We extend our model to detect interactions between the V3 and C4 domains of the HIV-1 envelope, and account for the uncertainty in mapping substitutions to the tree with a parametric bootstrap.


Asunto(s)
Evolución Molecular , VIH-1/química , VIH-1/genética , Modelos Genéticos , Análisis de Secuencia/métodos , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Filogenia , Conformación Proteica , Estructura Terciaria de Proteína , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA