Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 22538, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795348

RESUMEN

The hydrological functioning of urban trees can reduce stormwater runoff, mitigate the risk of flood, and improve water quality in developed areas. Tree canopies intercept rainfall and return water to the atmosphere through transpiration, while roots increase infiltration and storage in the soil. Despite this, the amount of stormwater that trees remove through these functions in urban settings is not well characterized, limiting the use of urban forests as practical stormwater management strategies. To address this gap, we use ecohydrological approaches to assess the transpiration rates of urban trees in different management settings. Our research questions are: Do transpiration rates of trees of the same species vary among different management contexts? Do relationships between environmental drivers and transpiration change among management contexts? These management settings included single trees over turfgrass and a cluster of trees over turfgrass in Montgomery County, MD, and closed canopy forest with a leaf litter layer in Baltimore, MD. We used sap flux sensors installed in 18 mature red maple (Acer rubrum L.) trees to characterize transpiration rates during the growing season. We also measured soil volumetric water content, air temperature, relative humidity, and precipitation at each site. In agreement with our initial hypothesis, we found that single trees had nearly three times the daily sum of sap flux density (JS) of closed canopy trees. When averaged over the entire measurement period, JS was approximately 260, 195, and 91 g H2O cm-2 day-1 for single trees, cluster trees and closed canopy trees, respectively. Additionally, single trees were more responsive to VPD than closed canopy and cluster trees. These results provide a better understanding of the influence of management context on urban tree transpiration and can help to identify targets to better manage urban forest settings to reduce urban stormwater runoff.

2.
Sci Total Environ ; 687: 451-459, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31212153

RESUMEN

Production of engineered carbon-based nanomaterials (CNMs) is rising, with increased risk of release to the environment during production, use, and disposal. This trend highlights a need to understand potential impacts of CNMs on the natural environment. Fullerenes are an emerging class of CNMs that are insoluble in water, and form aggregates that settle quickly, suggesting higher relative vulnerability of aquatic benthic ecosystems. This study assessed eco-toxicity of fullerenes (C60, C70) and the functionalized derivative, phenyl-C61-butyric acid methyl ester (PCBM), on functionally representative benthic organisms in traditional laboratory assays, and evaluated how the potential lethal and sub-lethal effects of fullerenes may indirectly impact benthic ecosystem function, including decomposition, primary productivity and nutrient cycling in lake microcosms with natural sediments. Standard toxicity tests indicated that population growth of Lumbriculus variegatus was reduced at 25 to 150 mg C60 kg-1, but C70 and PCBM did not affect growth or weight of organisms in artificial sediments at 25 mg kg-1. Survivorship and growth were lower in natural sediments with historic contamination, but C60 did not exacerbate this effect. C60 inhibited photosynthesis by the benthic diatom Nitzschia palea, and at high exposure chlorophyll a increased, suggesting a shading response. L. variegatus had strong effects on benthic ecosystem function, especially metabolism and nitrogen cycling, but C60 ≤ 30 mg kg-1 sediment did not influence the role of L. variegatus in driving benthic processes. These observations suggest that at moderate to high concentrations, C60 may directly impact benthic organisms. However, under natural conditions with low to moderate concentrations, C60 has little effect and does not indirectly impact the ecosystem processes maintained by such organisms. These results are a step further towards a better understanding of potential impacts of fullerenes on aquatic ecosystems, and can aid in the development of regulatory policies.


Asunto(s)
Ecosistema , Fulerenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Organismos Acuáticos , Agua Dulce
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA