Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
N Engl J Med ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38804512

RESUMEN

BACKGROUND: Minimal change disease and primary focal segmental glomerulosclerosis in adults, along with idiopathic nephrotic syndrome in children, are immune-mediated podocytopathies that lead to nephrotic syndrome. Autoantibodies targeting nephrin have been found in patients with minimal change disease, but their clinical and pathophysiological roles are unclear. METHODS: We conducted a multicenter study to analyze antinephrin autoantibodies in adults with glomerular diseases, including minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, IgA nephropathy, antineutrophil cytoplasmic antibody-associated glomerulonephritis, and lupus nephritis, as well as in children with idiopathic nephrotic syndrome and in controls. We also created an experimental mouse model through active immunization with recombinant murine nephrin. RESULTS: The study included 539 patients (357 adults and 182 children) and 117 controls. Among the adults, antinephrin autoantibodies were found in 46 of the 105 patients (44%) with minimal change disease, 7 of 74 (9%) with primary focal segmental glomerulosclerosis, and only in rare cases among the patients with other conditions. Of the 182 children with idiopathic nephrotic syndrome, 94 (52%) had detectable antinephrin autoantibodies. In the subgroup of patients with active minimal change disease or idiopathic nephrotic syndrome who were not receiving immunosuppressive treatment, the prevalence of antinephrin autoantibodies was as high as 69% and 90%, respectively. At study inclusion and during follow-up, antinephrin autoantibody levels were correlated with disease activity. Experimental immunization induced a nephrotic syndrome, a minimal change disease-like phenotype, IgG localization to the podocyte slit diaphragm, nephrin phosphorylation, and severe cytoskeletal changes in mice. CONCLUSIONS: In this study, circulating antinephrin autoantibodies were common in patients with minimal change disease or idiopathic nephrotic syndrome and appeared to be markers of disease activity. Their binding at the slit diaphragm induced podocyte dysfunction and nephrotic syndrome, which highlights their pathophysiological significance. (Funded by Deutsche Forschungsgemeinschaft and others.).

2.
Pediatr Nephrol ; 39(6): 1685-1707, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37728640

RESUMEN

Focal segmental glomerulosclerosis (FSGS) is a complex disease which describes different kinds of kidney defects, not exclusively linked with podocyte defects. Since nephrin mutation was first described in association with early-onset nephrotic syndrome (NS), many advancements have been made in understanding genetic patterns associated with FSGS. New genetic causes of FSGS have been discovered, displaying unexpected genotypes, and recognizing possible site of damage. Many recent large-scale sequencing analyses on patients affected by idiopathic chronic kidney disease (CKD), kidney failure (KF) of unknown origin, or classified as FSGS, have revealed collagen alpha IV genes, as one of the most frequent sites of pathogenic mutations. Also, recent interest in complex and systemic lysosomal storage diseases, such as Fabry disease, has highlighted GLA mutations as possible causes of FSGS. Tubulointerstitial disease, recently classified by KDIGO based on genetic subtypes, when associated with UMOD variants, may phenotypically gain FSGS features, as well as ciliopathy genes or others, otherwise leading to completely different phenotypes, but found carrying pathogenic variants with associated FSGS phenotype. Thus, glomerulosclerosis may conceal different heterogeneous conditions. When a kidney biopsy is performed, the principal objective is to provide an accurate diagnosis. The broad spectrum of phenotypic expression and genetic complexity is demonstrating that a combined path of management needs to be applied. Genetic investigation should not be reserved only to selected cases, but rather part of medical management, integrating with clinical and renal pathology records. FSGS heterogeneity should be interpreted as an interesting opportunity to discover new pathways of CKD, requiring prompt genotype-phenotype correlation. In this review, we aim to highlight how FSGS represents a peculiar kidney condition, demanding multidisciplinary management, and in which genetic analysis may solve some otherwise unrevealed idiopathic cases. Unfortunately there is not a uniform correlation between specific mutations and FSGS morphological classes, as the same variants may be identified in familial cases or sporadic FSGS/NS or manifest a variable spectrum of the same disease. These non-specific features make diagnosis challenging. The complexity of FSGS genotypes requires new directions. Old morphological classification does not provide much information about the responsible cause of disease and misdiagnoses may expose patients to immunosuppressive therapy side effects, mistaken genetic counseling, and misguided kidney transplant programs.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Síndrome Nefrótico , Insuficiencia Renal Crónica , Humanos , Glomeruloesclerosis Focal y Segmentaria/diagnóstico , Cicatriz/patología , Glomérulos Renales/patología , Riñón/patología , Síndrome Nefrótico/genética , Colágeno Tipo IV/genética , Insuficiencia Renal Crónica/patología
3.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338714

RESUMEN

Between 15-20% of patients with end stage renal disease (ESRD) do not know the cause of the primary kidney disease and can develop complications after kidney transplantation. We performed a genetic screening in 300 patients with kidney transplantation, or undiagnosed primary renal disease, in order to identify the primary disease cause and discriminate between overlapping phenotypes. We used a custom-made panel for next-generation sequencing (Agilent technology, Santa Clara, CA, USA), including genes associated with Fabry disease, podocytopaties, complement-mediated nephropathies and Alport syndrome-related diseases. We detected candidate diagnostic variants in genes associated with nephrotic syndrome and Focal Segmental Glomerulosclerosis (FSGS) in 29 out of 300 patients, solving about 10% of the probands. We also identified the same genetic cause of the disease (PAX2: c.1266dupC) in three family members with different clinical diagnoses. Interestingly we also found one female patient carrying a novel missense variant, c.1259C>A (p.Thr420Lys), in the GLA gene not previously associated with Fabry disease, which is in silico defined as a likely pathogenic and destabilizing, and associated with a mild alteration in GLA enzymatic activity. The identification of the specific genetic background may provide an opportunity to evaluate the risk of recurrence of the primary disease, especially among patient candidates living with a donor kidney transplant.


Asunto(s)
Enfermedad de Fabry , Glomeruloesclerosis Focal y Segmentaria , Enfermedades Renales , Trasplante de Riñón , Humanos , Femenino , Trasplante de Riñón/efectos adversos , Enfermedad de Fabry/diagnóstico , Enfermedad de Fabry/genética , Enfermedad de Fabry/patología , Pruebas Genéticas , Enfermedades Renales/patología , Riñón/patología , Glomeruloesclerosis Focal y Segmentaria/diagnóstico , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/patología
4.
BMC Med ; 21(1): 392, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37915050

RESUMEN

BACKGROUND: Sepsis is characterized by a dysregulated immune response and metabolic alterations, including decreased high-density lipoprotein cholesterol (HDL-C) levels. HDL exhibits beneficial properties, such as lipopolysaccharides (LPS) scavenging, exerting anti-inflammatory effects and providing endothelial protection. We investigated the effects of CER-001, an engineered HDL-mimetic, in a swine model of LPS-induced acute kidney injury (AKI) and a Phase 2a clinical trial, aiming to better understand its molecular basis in systemic inflammation and renal function. METHODS: We carried out a translational approach to study the effects of HDL administration on sepsis. Sterile systemic inflammation was induced in pigs by LPS infusion. Animals were randomized into LPS (n = 6), CER20 (single dose of CER-001 20 mg/kg; n = 6), and CER20 × 2 (two doses of CER-001 20 mg/kg; n = 6) groups. Survival rate, endothelial dysfunction biomarkers, pro-inflammatory mediators, LPS, and apolipoprotein A-I (ApoA-I) levels were assessed. Renal and liver histology and biochemistry were analyzed. Subsequently, we performed an open-label, randomized, dose-ranging (Phase 2a) study included 20 patients with sepsis due to intra-abdominal infection or urosepsis, randomized into Group A (conventional treatment, n = 5), Group B (CER-001 5 mg/kg BID, n = 5), Group C (CER-001 10 mg/kg BID, n = 5), and Group D (CER-001 20 mg/kg BID, n = 5). Primary outcomes were safety and efficacy in preventing AKI onset and severity; secondary outcomes include changes in inflammatory and endothelial dysfunction markers. RESULTS: CER-001 increased median survival, reduced inflammatory mediators, complement activation, and endothelial dysfunction in endotoxemic pigs. It enhanced LPS elimination through the bile and preserved liver and renal parenchyma. In the clinical study, CER-001 was well-tolerated with no serious adverse events related to study treatment. Rapid ApoA-I normalization was associated with enhanced LPS removal and immunomodulation with improvement of clinical outcomes, independently of the type and gravity of the sepsis. CER-001-treated patients had reduced risk for the onset and progression to severe AKI (stage 2 or 3) and, in a subset of critically ill patients, a reduced need for organ support and shorter ICU length of stay. CONCLUSIONS: CER-001 shows promise as a therapeutic strategy for sepsis management, improving outcomes and mitigating inflammation and organ damage. TRIAL REGISTRATION: The study was approved by the Agenzia Italiana del Farmaco (AIFA) and by the Local Ethic Committee (N° EUDRACT 2020-004202-60, Protocol CER-001- SEP_AKI_01) and was added to the EU Clinical Trials Register on January 13, 2021.


Asunto(s)
Lesión Renal Aguda , Sepsis , Humanos , Animales , Porcinos , Lipoproteínas HDL , Apolipoproteína A-I/uso terapéutico , Apolipoproteína A-I/química , Apolipoproteína A-I/farmacología , Lipopolisacáridos , Investigación Biomédica Traslacional , Inflamación , Sepsis/tratamiento farmacológico , Lesión Renal Aguda/tratamiento farmacológico , Mediadores de Inflamación
5.
FASEB J ; 36(12): e22650, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36394523

RESUMEN

Hepatitis C virus (HCV) adopts several immune evasion mechanisms such as interfering with innate immunity or promoting T-cell exhaustion. However, the recent direct-antiviral agents (DAAs) rapidly eliminate the virus, and the repercussions in terms of immune system balance are unknown. Here we compared the PBMCs transcriptomic profile of patients with HCV chronic infection at baseline (T0) and 12 weeks after the end of the therapy (SVR12) with DAAs. 3862 genes were differently modulated, identifying oxidative phosphorylation as the top canonical pathway differentially activated. Therefore, we dissected PBMCs bioenergetic profile by analyzing mitochondrial respiration and glycolysis at 4 timepoints: T0, 4 weeks of therapy, end of therapy (EoT), and SVR12. Maximal and reserve respiratory capacity considerably increased at EoT, persisting until SVR12. Notably, over time a significant increase was observed in respiratory chain (RC) complexes protein levels and the enzymatic activity of complexes I, II, and IV. Mitochondrial-DNA integrity improved over time, and the expression of mitochondrial biogenesis key regulators such as TFAM, Nrf-1, and PPARGC1A significantly increased at SVR12; hence, RC complexes synthesis and mitochondrial respiration were supported after treatment. HCV clearance with DAAS profoundly changed PBMCs bioenergetic profile, suggesting the immunometabolism study as a new approach to the understanding of viral immune evasion mechanisms and host adaptations during infections and therapies.


Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Leucocitos Mononucleares , Hepatitis C/tratamiento farmacológico , Homeostasis , Mitocondrias
6.
Am J Transplant ; 22(9): 2139-2157, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35583104

RESUMEN

Extracellular vesicles (EV) are emerging mediators in several diseases. However, their role in the pathophysiology of antibody-mediated allograft rejection (AMR) has been poorly investigated. Here, we investigated the role of EV isolated from AMR patients in inducing tubular senescence and endothelial to mesenchymal transition (EndMT) and analyzed their miRNA expression profile. By multiplex bead flow cytometry, we characterized the immunophenotype of plasma AMR-derived EV and found a prevalent platelet and endothelial cell origin. In vitro, AMR-derived EV induced tubular senescence by upregulating SA-ß Gal and CDKN1A mRNA. Furthermore, AMR-derived EV induced EndMT. The occurrence of tubular senescence and EndMT was confirmed by analysis of renal biopsies from the same AMR patients. Moreover, AMR-derived EV induced C3 gene upregulation and CFH downregulation in tubular epithelial cells, with C4d deposition on endothelial cells. Interestingly, RNase-mediated digestion of EV cargo completely abrogated tubular senescence and EndMT. By microarray analysis, miR-604, miR-515-3p, miR-let-7d-5p, and miR-590-3p were significantly upregulated in EV from AMR group compared with transplant controls, whereas miR-24-3p and miR-29a-3p were downregulated. Therefore, EV-associated miRNA could act as active player in AMR pathogenesis, unraveling potential mechanisms of accelerated graft senescence, complement activation and early fibrosis that might lead to new therapeutic intervention.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Células Endoteliales/metabolismo , Células Epiteliales/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , MicroARNs/genética , ARN Mensajero/metabolismo
7.
Am J Transplant ; 22(5): 1475-1482, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35038362

RESUMEN

Kidney transplant recipients (KTRs) have been considered as patients at higher risk of SARS-CoV-2-related disease severity, thus COVID-19 vaccination was highly recommended. However, possible interferences of different immunosuppression with development of both humoral and T cell-mediated immune response to COVID-19 vaccination have not been determined. Here we evaluated the association between mTOR-inhibitors (mTOR-I) and immune response to mRNA BNT162b2 (Pfizer-BioNTech) vaccine in KTR. To this aim 132 consecutive KTR vaccinated against COVID-19 in the early 2021 were enrolled, and humoral and T cell-mediated immune response were assessed after 4-5 weeks. Patients treated with mTOR-I showed significantly higher anti-SARS-CoV-2 IgG titer (p = .003) and higher percentages of anti-SARS-CoV-2 S1/RBD Ig (p = .024), than those without. Moreover, SARS-CoV-2-specific T cell-derived IFNγ release was significantly increased in patients treated with mTOR-I (p < .001), than in those without. Multivariate analysis confirmed that therapy with mTOR-I gained better humoral (p = .005) and T cell-mediated immune response (p = .005) in KTR. The presence of mTOR-I is associated with a better immune response to COVID-19 vaccine in KTR compared to therapy without mTOR-I, not only by increasing vaccine-induced antibodies but also by stimulating anti-SARS-CoV-2 T cell response. These finding are consistent with a potential beneficial role of mTOR-I as modulators of immune response to COVID-19 vaccine in KTR.


Asunto(s)
Vacuna BNT162 , COVID-19 , Trasplante de Riñón , Inhibidores mTOR , Anticuerpos Antivirales , Vacuna BNT162/inmunología , COVID-19/prevención & control , Humanos , Inmunidad Celular , Inmunidad Humoral , SARS-CoV-2 , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Receptores de Trasplantes
8.
Exp Dermatol ; 31(2): 143-153, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34331820

RESUMEN

The mammalian target of rapamycin inhibitor (mTOR-I) Rapamycin, a drug widely used in kidney transplantation, exerts important anti-cancer effects, particularly in Kaposi's Sarcoma (KS), through several biological interactions. In this in vivo and in vitro study, we explored whether the activation of the autophagic pathway through the low-affinity receptor for nerve growth factor, p75NTR , may have a pivotal role in the anti-cancer effect exerted by Rapamycin in S. Our Kimmunohistochemistry results revealed a significant hyper-activation of the autophagic pathway in KS lesions. In vitro experiments on KS cell lines showed that Rapamycin exposure reduced cell viability by increasing the autophagic process, in the absence of apoptosis, through the transcriptional activation of p75NTR via EGR1. Interestingly, p75NTR gene silencing prevented the increase of the autophagic process and the reduction of cell viability. Moreover, p75NTR activation promoted the upregulation of phosphatase and tensin homolog (PTEN), a tumour suppressor that modulates the PI3K/Akt/mTOR pathway. In conclusion, our in vitro data demonstrated, for the first time, that in Kaposi's sarcoma, autophagy triggered by Rapamycin through p75NTR represented a major mechanism by which mTOR inhibitors may induce tumour regression. Additionally, it suggested that p75NTR protein analysis could be proposed as a new potential biomarker to predict response to Rapamycin in kidney transplant recipients affected by Kaposi's sarcoma.


Asunto(s)
Sarcoma de Kaposi , Sirolimus , Apoptosis , Autofagia , Humanos , Fosfatidilinositol 3-Quinasas , Sarcoma de Kaposi/patología , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo
9.
Int J Mol Sci ; 23(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36555640

RESUMEN

Systemic lupus erythematosus (SLE) is a chronic, systemic autoimmune disease with a wide range of clinical expressions. The kidney is often affected, usually within 5 years of the onset of SLE, and lupus nephropathy (LN) carries a high risk for increased morbidity. The clinical heterogeneity of the disease is accompanied by complex disturbances affecting the immune system with inflammation and tissue damage due to loss of tolerance to nuclear antigens and the deposition of immune complexes in tissues. Several studies have reported that in human SLE, there is an important role of the Type-I-interferons (INF) system suggested by the upregulation of INF-inducible genes observed in serial gene expression microarray studies. This review aims to describe the transduction pathways of Type-I-interferons, in particular INFα, and its immune-regulatory function in the pathogenesis of SLE and, in particular, in LN. In addition, recent novelties concerning biologic therapy in LN will be discussed.


Asunto(s)
Interferón Tipo I , Lupus Eritematoso Sistémico , Humanos , Interferón-alfa/uso terapéutico , Lupus Eritematoso Sistémico/tratamiento farmacológico , Lupus Eritematoso Sistémico/genética , Interferón Tipo I/metabolismo , Complejo Antígeno-Anticuerpo , Antígenos Nucleares
10.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34445576

RESUMEN

CD40 crosslinking plays an important role in regulating cell migration, adhesion and proliferation in renal cell carcinoma (RCC). CD40/CD40L interaction on RCC cells activates different intracellular pathways but the molecular mechanisms leading to cell scattering are not yet clearly defined. Aim of our study was to investigate the main intracellular pathways activated by CD40 ligation and their specific involvement in RCC cell migration. CD40 ligation increased the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun NH (2)-terminal kinase (JNK) and p38 MAPK. Furthermore, CD40 crosslinking activated different transcriptional factors on RCC cell lines: AP-1, NFkB and some members of the Nuclear Factor of Activated T cells (NFAT) family. Interestingly, the specific inhibition of NFAT factors by cyclosporine A, completely blocked RCC cell motility induced by CD40 ligation. In tumor tissue, we observed a higher expression of NFAT factors and in particular an increased activation and nuclear migration of NFATc4 on RCC tumor tissues belonging to patients that developed metastases when compared to those who did not. Moreover, CD40-CD40L interaction induced a cytoskeleton reorganization and increased the expression of integrin ß1 on RCC cell lines, and this effect was reversed by cyclosporine A and NFAT inhibition. These data suggest that CD40 ligation induces the activation of different intracellular signaling pathways, in particular the NFATs factors, that could represent a potential therapeutic target in the setting of patients with metastatic RCC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Antígenos CD40/metabolismo , Ligando de CD40/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales/patología , Factores de Transcripción NFATC/metabolismo , Anciano , Apoptosis , Biomarcadores de Tumor/genética , Antígenos CD40/genética , Ligando de CD40/genética , Movimiento Celular , Proliferación Celular , Reactivos de Enlaces Cruzados , Femenino , Humanos , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Masculino , Persona de Mediana Edad , Factores de Transcripción NFATC/genética , Metástasis de la Neoplasia , Pronóstico , Células Tumorales Cultivadas
11.
Int J Mol Sci ; 22(10)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34068941

RESUMEN

Diabetic nephropathy (DN) is the most frequent cause of end-stage renal disease. Tubulointerstitial accumulation of lysine 63 (K63)-ubiquitinated (Ub) proteins is involved in the progression of DN fibrosis and correlates with urinary miR-27b-3p downregulation. We explored the renoprotective effect of an inhibitor of K63-Ub (NSC697923), alone or in combination with the ACE-inhibitor ramipril, in vitro and in vivo. Proximal tubular epithelial cells and diabetic DBA/2J mice were treated with NSC697923 and/or ramipril. K63-Ub protein accumulation along with α-SMA, collagen I and III, FSP-1, vimentin, p16INK4A expression, SA-α Gal staining, Sirius Red, and PAS staining were measured. Finally, we measured the urinary albumin to creatinine ratio (uACR), and urinary miR-27b-3p expression in mice. NSC697923, both alone and in association with ramipril, in vitro and in vivo inhibited hyperglycemia-induced epithelial to mesenchymal transition by significantly reducing K63-Ub proteins, α-SMA, collagen I, vimentin, FSP-1 expression, and collagen III along with tubulointerstitial and glomerular fibrosis. Treated mice also showed recovery of urinary miR-27b-3p and restored expression of p16INK4A. Moreover, NSC697923 in combination with ramipril demonstrated a trend in the reduction of uACR. In conclusion, we suggest that selective inhibition of K63-Ub, when combined with the conventional treatment with ACE inhibitors, might represent a novel treatment strategy to prevent the progression of fibrosis and proteinuria in diabetic nephropathy and we propose miR-27b-3p as a biomarker of treatment efficacy.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Nefropatías Diabéticas/prevención & control , Fibrosis/prevención & control , Lisina/química , Nitrofuranos/farmacología , Ramipril/farmacología , Sulfonas/farmacología , Ubiquitinación , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Quimioterapia Combinada , Femenino , Fibrosis/etiología , Fibrosis/metabolismo , Fibrosis/patología , Ratones , Ratones Endogámicos DBA
12.
BMC Nephrol ; 21(1): 242, 2020 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-32600374

RESUMEN

BACKGROUND: Diabetic kidney disease (DKD) remains one of the leading causes of premature death in diabetes. DKD is classified on albuminuria and reduced kidney function (estimated glomerular filtration rate (eGFR)) but these have modest value for predicting future renal status. There is an unmet need for biomarkers that can be used in clinical settings which also improve prediction of renal decline on top of routinely available data, particularly in the early stages. The iBEAt study of the BEAt-DKD project aims to determine whether renal imaging biomarkers (magnetic resonance imaging (MRI) and ultrasound (US)) provide insight into the pathogenesis and heterogeneity of DKD (primary aim) and whether they have potential as prognostic biomarkers in DKD (secondary aim). METHODS: iBEAt is a prospective multi-centre observational cohort study recruiting 500 patients with type 2 diabetes (T2D) and eGFR ≥30 ml/min/1.73m2. At baseline, blood and urine will be collected, clinical examinations will be performed, and medical history will be obtained. These assessments will be repeated annually for 3 years. At baseline each participant will also undergo quantitative renal MRI and US with central processing of MRI images. Biological samples will be stored in a central laboratory for biomarker and validation studies, and data in a central data depository. Data analysis will explore the potential associations between imaging biomarkers and renal function, and whether the imaging biomarkers improve the prediction of DKD progression. Ancillary substudies will: (1) validate imaging biomarkers against renal histopathology; (2) validate MRI based renal blood flow measurements against H2O15 positron-emission tomography (PET); (3) validate methods for (semi-)automated processing of renal MRI; (4) examine longitudinal changes in imaging biomarkers; (5) examine whether glycocalyx and microvascular measures are associated with imaging biomarkers and eGFR decline; (6) explore whether the findings in T2D can be extrapolated to type 1 diabetes. DISCUSSION: iBEAt is the largest DKD imaging study to date and will provide valuable insights into the progression and heterogeneity of DKD. The results may contribute to a more personalised approach to DKD management in patients with T2D. TRIAL REGISTRATION: Clinicaltrials.gov ( NCT03716401 ).


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Nefropatías Diabéticas/diagnóstico por imagen , Riñón/diagnóstico por imagen , Insuficiencia Renal Crónica/diagnóstico por imagen , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/patología , Progresión de la Enfermedad , Humanos , Riñón/irrigación sanguínea , Riñón/patología , Imagen por Resonancia Magnética , Estudios Observacionales como Asunto , Radioisótopos de Oxígeno , Tomografía de Emisión de Positrones , Pronóstico , Estudios Prospectivos , Circulación Renal , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/patología , Ultrasonografía
14.
Int J Mol Sci ; 21(18)2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32899575

RESUMEN

Chronic antibody-mediated rejection (CAMR) is the major cause of kidney transplant failure. The molecular mechanisms underlying this event are still poorly defined and this lack of knowledge deeply influences the potential therapeutic strategies. The aim of our study was to analyze the phosphoproteome of peripheral blood mononuclear cells (PBMCs), to identify cellular signaling networks differentially activated in CAMR. Phosphoproteins isolated from PBMCs of biopsy proven CAMR, kidney transplant recipients with normal graft function and histology and healthy immunocompetent individuals, have been investigated by proteomic analysis. Phosphoproteomic results were confirmed by Western blot and PBMCs' confocal microscopy analyses. Overall, 38 PBMCs samples were analyzed. A differential analysis of PBMCs' phosphoproteomes revealed an increase of lactotransferrin, actin-related protein 2 (ARPC2) and calgranulin-B in antibody-mediated rejection patients, compared to controls. Increased expression of phosphorylated ARPC2 and its correlation to F-actin filaments were confirmed in CAMR patients. Our results are the first evidence of altered cytoskeleton organization in circulating immune cells of CAMR patients. The increased expression of phosphorylated ARPC2 found in the PBMCs of our patients, and its association with derangement of F-actin filaments, might suggest that proteins regulating actin dynamics in immune cells could be involved in the mechanism of CAMR of kidney grafts.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Rechazo de Injerto/fisiopatología , Adulto , Anticuerpos/metabolismo , Citotoxicidad Celular Dependiente de Anticuerpos , Proteínas del Citoesqueleto/fisiología , Citoesqueleto/metabolismo , Citoesqueleto/fisiología , Femenino , Rechazo de Injerto/inmunología , Rechazo de Injerto/metabolismo , Humanos , Riñón/patología , Trasplante de Riñón/métodos , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , Fosforilación , Proteómica
15.
Int J Mol Sci ; 22(1)2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383950

RESUMEN

Adult Renal Stem/Progenitor Cells (ARPCs) have been recently identified in the human kidney and several studies show their active role in kidney repair processes during acute or chronic injury. However, little is known about their immunomodulatory properties and their capacity to regulate specific T cell subpopulations. We co-cultured ARPCs activated by triggering Toll-Like Receptor 2 (TLR2) with human peripheral blood mononuclear cells for 5 days and 15 days and studied their immunomodulatory capacity on T cell subpopulations. We found that activated-ARPCs were able to decrease T cell proliferation but did not affect CD8+ and CD4+ T cells. Instead, Tregs and CD3+ CD4- CD8- double-negative (DN) T cells decreased after 5 days and increased after 15 days of co-culture. In addition, we found that PAI1, MCP1, GM-CSF, and CXCL1 were significantly expressed by TLR2-activated ARPCs alone and were up-regulated in T cells co-cultured with activated ARPCs. The exogenous cocktail of cytokines was able to reproduce the immunomodulatory effects of the co-culture with activated ARPCs. These data showed that ARPCs can regulate immune response by inducing Tregs and DN T cells cell modulation, which are involved in the balance between immune tolerance and autoimmunity.


Asunto(s)
Células Madre Adultas/metabolismo , Riñón/citología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Biomarcadores , Proliferación Celular , Quimiocinas/metabolismo , Humanos , Inmunomodulación , Inmunofenotipificación , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Receptor Toll-Like 2/metabolismo
16.
Nephrol Dial Transplant ; 34(1): 157-166, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30059989

RESUMEN

Background: Malignancies represent the third leading cause of post-transplant mortality worldwide. The main challenge for transplant physicians is a timely diagnosis of this condition. The aim of the study was to identify a soluble diagnostic marker for monitoring the development of post-transplant malignancies. Methods: This is a multicentre, observational, perspective, case-control study. We enrolled 47 patients with post-transplant solid neoplasia. As a control group we employed 106 transplant recipients without a history of neoplasia and matched them with cases for the main demographic and clinical features. We investigated the transcriptomic profiles of peripheral blood mononuclear cells from kidney graft recipients with and without post-transplant malignancies enrolled in two of the participating centres, randomly selected from the whole study population. Microarray results were confirmed by quantitative polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) in the remaining patients from the same transplant centres and validated in a further independent group enrolled in two different transplant centres. Results: We identified 535 differentially expressed genes comparing patients with and without post-transplant malignancies (fold change ≥2.5; false discovery rate <5%). The cancer pathway was closely related to gene expression data, and one of the most down-regulated genes in this pathway was interleukin-27 (IL-27), a cytokine regulating anti-tumour immunity. Quantitative PCR and ELISA confirmed the microarray data. Interestingly, IL-27 plasma levels were able to discriminate patients with post-transplant neoplasia with a specificity of 80% and a sensitivity of 81%. This observation was confirmed in an independent set of patients from two different transplant centres. Conclusions: Our data suggest that IL-27 may represent a potential immunological marker for the timely identification of post-transplant neoplasia.


Asunto(s)
Biomarcadores/metabolismo , Interleucinas/metabolismo , Trasplante de Riñón/efectos adversos , Leucocitos Mononucleares/metabolismo , Neoplasias/diagnóstico , Complicaciones Posoperatorias/diagnóstico , Transcriptoma , Edad de Inicio , Anciano , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias/etiología , Neoplasias/metabolismo , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/metabolismo , Pronóstico , Receptores de Trasplantes
17.
FASEB J ; 31(1): 308-319, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27881486

RESUMEN

The purpose of our study was to evaluate how hyperglycemia (HG) influences Lys63 protein ubiquitination and its involvement in tubular damage and fibrosis in diabetic nephropathy (DN). Gene and protein expression of UBE2v1, a ubiquitin-conjugating E2-enzyme variant that mediates Lys63-linked ubiquitination, and Lys63-ubiquitinated proteins increased in HK2 tubular cells under HG. Matrix-assisted laser desorption/ionization-time of flight/tandem mass spectrometry identified 30 Lys63-ubiquitinated proteins, mainly involved in cellular organization, such as ß-actin, whose Lys63 ubiquitination increased under HG, leading to cytoskeleton disorganization. This effect was reversed by the inhibitor of the Ubc13/UBE2v1 complex NSC697923. Western blot analysis confirmed that UBE2v1 silencing in HK2 under HG, restored Lys63-ß-actin ubiquitination levels to the basal condition. Immunohistochemistry on patients with type 2 diabetic (T2D) revealed an increase in UBE2v1- and Lys63-ubiquitinated proteins, particularly in kidneys of patients with DN compared with control kidneys and other nondiabetic renal diseases, such as membranous nephropathy. Increased Lys63 ubiquitination both in vivo in patients with DN and in vitro, correlated with α-SMA expression, whereas UBE2v1 silencing reduced HG-induced α-SMA protein levels, returning them to basal expression. In conclusion, UBE2v1- and Lys63-ubiquitinated proteins increase in vitro under HG, as well as in vivo in T2D, is augmented in patients with DN, and may affect cytoskeleton organization and influence epithelial-to-mesenchymal transition. This process may drive the progression of tubular damage and interstitial fibrosis in patients with DN.-Pontrelli, P., Conserva, F., Papale, M., Oranger, A., Barozzino, M., Vocino, G., Rochetti, M. T., Gigante, M., Castellano, G., Rossini, M., Simone, S., Laviola, L., Giorgino, F., Grandaliano, G., Di Paolo, S., Gesualdo, L. Lysine 63 ubiquitination is involved in the progression of tubular damage in diabetic nephropathy.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Regulación de la Expresión Génica/fisiología , Factores de Transcripción/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación/fisiología , Secuencia de Aminoácidos , Biomarcadores , Línea Celular , Células Epiteliales/metabolismo , Silenciador del Gen , Humanos , Factores de Transcripción/genética , Enzimas Ubiquitina-Conjugadoras/genética , Proteínas Ubiquitinadas
18.
Int J Mol Sci ; 19(4)2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29677166

RESUMEN

The administration of Everolimus (EVE), a mTOR inhibitor used in transplantation and cancer, is often associated with adverse effects including pulmonary fibrosis. Although the underlying mechanism is not fully clarified, this condition could be in part caused by epithelial to mesenchymal transition (EMT) of airway cells. To improve our knowledge, primary bronchial epithelial cells (BE63/3) were treated with EVE (5 and 100 nM) for 24 h. EMT markers (α-SMA, vimentin, fibronectin) were measured by RT-PCR. Transepithelial resistance was measured by Millicell-ERS ohmmeter. mRNA and microRNA profiling were performed by Illumina and Agilent kit, respectively. Only high dose EVE increased EMT markers and reduced the transepithelial resistance of BE63/3. Bioinformatics showed 125 de-regulated genes that, according to enrichment analysis, were implicated in collagen synthesis/metabolism. Connective tissue growth factor (CTGF) was one of the higher up-regulated mRNA. Five nM EVE was ineffective on the pro-fibrotic machinery. Additionally, 3 miRNAs resulted hyper-expressed after 100 nM EVE and able to regulate 31 of the genes selected by the transcriptomic analysis (including CTGF). RT-PCR and western blot for MMP12 and CTGF validated high-throughput results. Our results revealed a complex biological network implicated in EVE-related pulmonary fibrosis and underlined new potential disease biomarkers and therapeutic targets.


Asunto(s)
Antineoplásicos/efectos adversos , Everolimus/efectos adversos , MicroARNs/genética , Fibrosis Pulmonar/metabolismo , Transcriptoma/genética , Actinas/metabolismo , Animales , Línea Celular , Células Cultivadas , Biología Computacional , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fibronectinas/metabolismo , Humanos , Metaloproteinasa 12 de la Matriz/metabolismo , Ratones , Células 3T3 NIH , Fibrosis Pulmonar/genética , ARN Mensajero/metabolismo
19.
J Transl Med ; 14: 84, 2016 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-27063186

RESUMEN

BACKGROUND: Mammalian microRNAs (miR) regulate the expression of genes relevant for the development of adaptive and innate immunity against cancer. Since T cell dysfunction has previously been reported in patients with renal cell carcinoma (RCC; clear cell type), we aimed to analyze these immune cells for genetic and protein differences when compared to normal donor T cells freshly after isolation and 35 days after in vitro stimulation (IVS) with HLA-matched RCC tumor cells. METHODS: We investigated gene expression profiles of tumor-reactive CD8(+) T cells obtained from RCC patient and compared with their HLA-matched healthy sibling donors using a microarray approach. In addition, miRNAs analysis was performed in a validation cohort of peripheral blood CD8(+) T cells from 25 RCC patients compared to 15 healthy volunteers. RESULTS: We observed that CD8(+) T cells from RCC patients expressed reduced levels of anti-apoptotic and proliferation-associated gene products when compared with normal donor T cells both pre- and post-IVS. In particular, JAK3 and MCL-1 were down-regulated in patient CD8(+) T cells versus their normal counterparts, likely due to defective suppressor activity of miR-29b and miR-198 in RCC CD8(+) T cells. Indeed, specific inhibition of miR-29b or miR-198 in peripheral blood mononuclear cells (PBMCs) isolated from RCC patients, resulted in the up-regulation of JAK3 and MCL-1 proteins and significant improvement of cell survival in vitro. CONCLUSIONS: Our results suggest that miR-29b and miR-198 dysregulation in RCC patient CD8(+) T cells is associated with dysfunctional immunity and foreshadow the development of miR-targeted therapeutics to correct such T cell defects in vivo.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/inmunología , Regulación hacia Abajo/genética , Janus Quinasa 3/metabolismo , MicroARNs/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Adulto , Anciano , Apoptosis/genética , Separación Celular , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Janus Quinasa 3/genética , Neoplasias Renales/genética , Neoplasias Renales/inmunología , Leucocitos Mononucleares/metabolismo , Masculino , MicroARNs/genética , Persona de Mediana Edad , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Fenotipo , Donantes de Tejidos , Transfección , Trasplante Homólogo , Células Tumorales Cultivadas , Regulación hacia Arriba/genética
20.
J Pathol ; 237(1): 72-84, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25925804

RESUMEN

Chronic antibody-mediated rejection (CAMR) represents the main cause of kidney graft loss. To uncover the molecular mechanisms underlying this condition, we characterized the molecular signature of peripheral blood mononuclear cells (PBMCs) and, separately, of CD4(+) T lymphocytes isolated from CAMR patients, compared to kidney transplant recipients with normal graft function and histology. We enrolled 29 patients with biopsy-proven CAMR, 29 stable transplant recipients (controls), and 8 transplant recipients with clinical and histological evidence of interstitial fibrosis/tubular atrophy. Messenger RNA and microRNA profiling of PBMCs and CD4(+) T lymphocytes was performed using Agilent microarrays in eight randomly selected patients per group from CAMR and control subjects. Results were evaluated statistically and by functional pathway analysis (Ingenuity Pathway Analysis) and validated in the remaining subjects. In PBMCs, 45 genes were differentially expressed between the two groups, most of which were up-regulated in CAMR and were involved in type I interferon signalling. In the same patients, 16 microRNAs were down-regulated in CAMR subjects compared to controls: four were predicted modulators of six mRNAs identified in the transcriptional analysis. In silico functional analysis supported the involvement of type I interferon signalling. To further confirm this result, we investigated the transcriptomic profiles of CD4(+) T lymphocytes in an independent group of patients, observing that the activation of type I interferon signalling was a specific hallmark of CAMR. In addition, in CAMR patients, we detected a reduction of circulating BDCA2(+) dendritic cells, the natural type I interferon-producing cells, and their recruitment into the graft along with increased expression of MXA, a type I interferon-induced protein, at the tubulointerstitial and vascular level. Finally, interferon alpha mRNA expression was significantly increased in CAMR compared to control biopsies. We conclude that type I interferon signalling may represent the molecular signature of CAMR.


Asunto(s)
Rechazo de Injerto/inmunología , Interferón Tipo I/inmunología , Trasplante de Riñón/efectos adversos , Riñón/inmunología , Riñón/cirugía , Leucocitos Mononucleares/inmunología , Adulto , Anciano , Biomarcadores/metabolismo , Biopsia , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Estudios de Casos y Controles , Enfermedad Crónica , Femenino , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Estudios de Asociación Genética , Rechazo de Injerto/sangre , Rechazo de Injerto/genética , Humanos , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Riñón/metabolismo , Riñón/patología , Leucocitos Mononucleares/metabolismo , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/metabolismo , Transducción de Señal , Transcripción Genética , Transcriptoma , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA