Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cerebrovasc Dis ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228105

RESUMEN

INTRODUCTION: Post-stroke dysphagia and communication impairments occur in two-thirds of acute stroke survivors. Identifying the shared neuroanatomical substrate for related impairments could facilitate the development of cross-system therapies. Our purpose was to elucidate discrete brain regions predictive of the combined presence of dysphagia alongside dysarthria and/or aphasia post-stroke. METHODS: We included 40 right (RHS) and 67 left hemisphere (LHS) patients from an acute ischemic stroke cohort with lesions demarcated on diffusion weighted imaging. We undertook binary non-parametric voxel-lesion symptom mapping with a false discovery rate of p <0.05 for co-occurring dysphagia, dysarthria, and aphasia (LHS only). If no voxels survived the threshold, a cluster analysis of >20 voxels involving an uncorrected p <0.01 was applied to identify brain regions associated with the co-occurring impairments. RESULTS: Cluster analyses revealed that dysphagia and dysarthria were associated with insular and superior temporal gyrus (STG) involvement after RHS and with basal ganglia (BG), internal capsule, and thalamic involvement after LHS. Co-occurring dysphagia, dysarthria, and aphasia were associated with BG, STG, and insular cortex involvement. DISCUSSION: Our findings highlight the role of the insula and structures of the BG in co-occurrence patterns involving dysphagia, dysarthria, and aphasia. These newly identified biomarkers may inform new rehabilitation therapeutic targets for treating cross-system functions.

2.
Can J Neurol Sci ; 51(1): 57-63, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36624923

RESUMEN

BACKGROUND: In patients with intracranial steno-occlusive disease (SOD), the risk of hemodynamic stroke depends on the poststenotic vasodilatory reserve. Cerebrovascular reactivity (CVR) is a test for vasodilatory reserve. We tested for vasodilatory reserve by using PETCO2 as the stressor, and Blood Oxygen Level Dependent (BOLD) MRI as a surrogate of blood flow. We correlate the CVR to the incidence of stroke after a 1-year follow-up in patients with symptomatic intracranial SOD. METHODS: In this retrospective study, 100 consecutive patients with symptomatic intracranial SOD that had undergone CVR testing were identified. CVR was measured as % BOLD MR signal intensity/mmHg PETCO2. All patients with normal CVR were treated with optimal medical therapy; those with abnormal CVR were offered revascularization where feasible. We determined the incidence of stroke at 1 year. RESULTS: 83 patients were included in the study. CVR was normal in 14 patients and impaired in 69 patients ipsilateral to the lesion. Of these, 53 underwent surgical revascularization. CVR and symptoms improved in 86% of the latter. The overall incidence of stroke was 4.8 % (4/83). All strokes occurred in patients with impaired CVR (4/69; 2/53 in the surgical group, all in the nonrevascularized hemisphere), and none in patients with normal CVR (0/14). CONCLUSION: Our study confirms that CO2-BOLD MRI CVR can be used as a brain stress test for the assessment of cerebrovascular reserve. Impaired CVR is associated with a higher incidence of stroke and normal CVR despite significant stenosis is associated with a low risk for stroke.


Asunto(s)
Dióxido de Carbono , Accidente Cerebrovascular , Humanos , Estudios Retrospectivos , Prueba de Esfuerzo , Circulación Cerebrovascular/fisiología , Encéfalo , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/epidemiología , Imagen por Resonancia Magnética , Hemodinámica
3.
Hum Brain Mapp ; 44(3): 1019-1029, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36308389

RESUMEN

The assessment of resting perfusion measures (mean transit time, cerebral blood flow, and cerebral blood volume) with magnetic resonance imaging currently requires the presence of a susceptibility contrast agent such as gadolinium. Here, we present an initial comparison between perfusion measures obtained using hypoxia-induced deoxyhemoglobin and gadolinium in healthy study participants. We hypothesize that resting cerebral perfusion measures obtained using precise changes of deoxyhemoglobin concentration will generate images comparable to those obtained using a clinical standard, gadolinium. Eight healthy study participants were recruited (6F; age 23-60). The study was performed using a 3-Tesla scanner with an eight-channel head coil. The experimental protocol consisted of a high-resolution T1-weighted scan followed by two BOLD sequence scans in which each participant underwent a controlled bolus of transient pulmonary hypoxia, and subsequently received an intravenous bolus of gadolinium. The resting perfusion measures calculated using hypoxia-induced deoxyhemoglobin and gadolinium yielded maps that looked spatially comparable. There was no statistical difference between methods in the average voxel-wise measures of mean transit time, relative cerebral blood flow and relative cerebral blood volume, in the gray matter or white matter within each participant. We conclude that perfusion measures generated with hypoxia-induced deoxyhemoglobin are spatially and quantitatively comparable to those generated from a gadolinium injection in the same healthy participant.


Asunto(s)
Medios de Contraste , Gadolinio , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Hemoglobinas , Imagen por Resonancia Magnética/métodos , Circulación Cerebrovascular/fisiología
4.
J Magn Reson Imaging ; 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38135486

RESUMEN

BACKGROUND: Cerebrovascular reactivity (CVR) is a measure of the change in cerebral blood flow (CBF) in response to a vasoactive challenge. It is a useful indicator of the brain's vascular health. PURPOSE: To evaluate the factors that influence successful and unsuccessful CVR examinations using precise arterial and end-tidal partial pressure of CO2 control during blood oxygen level-dependent (BOLD) MRI. STUDY TYPE: Retrospective. SUBJECTS: Patients that underwent a CVR between October 2005 and May 2021 were studied (total of 1162 CVR examinations). The mean (±SD) age was 46.1 (±18.8) years, and 352 patients (43%) were female. FIELD STRENGTH/SEQUENCE: 3 T; T1-weighted images, T2*-weighed two-dimensional gradient-echo sequence with standard echo-planar readout. ASSESSMENT: Measurements were obtained following precise hypercapnic stimuli using BOLD MRI as a surrogate of CBF. Successful CVR examinations were defined as those where: 1) patients were able to complete CVR testing, and 2) a clinically useful CVR map was generated. Unsuccessful examinations were defined as those where patients were not able to complete the CVR examination or the CVR maps were judged to be unreliable due to, for example, excessive head motion, and poor PET CO2 targeting. STATISTICAL ANALYSIS: Successful and unsuccessful CVR examinations between hypercapnic stimuli, and between different patterns of stimulus were compared with Chi-Square tests. Interobserver variability was determined by using the intraclass correlation coefficient (P < 0.05 is significant). RESULTS: In total 1115 CVR tests in 662 patients were included in the final analysis. The success rate of generating CVR maps was 90.8% (1012 of 1115). Among the different hypercapnic stimuli, those containing a step plus a ramp protocol was the most successful (95.18%). Among the unsuccessful examinations (9.23%), most were patient related (89.3%), the most common of which was difficulty breathing. DATA CONCLUSION: CO2 -BOLD MRI CVR studies are well tolerated with a high success rate. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 3.

5.
Neuroimage ; 261: 119523, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35907499

RESUMEN

Cerebral blood arrival and tissue transit times are sensitive measures of the efficiency of tissue perfusion and can provide clinically meaningful information on collateral blood flow status. We exploit the arterial blood oxygen level dependent (BOLD) signal contrast established by precisely decreasing, and then increasing, arterial hemoglobin saturation using respiratory re-oxygenation challenges to quantify arterial blood arrival times throughout the brain. We term this approach the Step Hemoglobin re-Oxygenation Contrast Stimulus (SHOCS). Carpet plot analysis yielded measures of signal onset (blood arrival), global transit time (gTT) and calculations of relative total blood volume. Onset times averaged across 12 healthy subjects were 1.1 ± 0.4 and 1.9 ± 0.6 for cortical gray and deep white matter, respectively. The average whole brain gTT was 4.5 ± 0.9 s. The SHOCS response was 1.7 fold higher in grey versus white matter; in line with known differences in tissue-specific blood volume fraction. SHOCS was also applied in a patient with unilateral carotid artery occlusion revealing ipsilateral prolonged signal onset with normal perfusion in the unaffected hemisphere. We anticipate that SHOCS will further inform on the extent of collateral blood flow in patients with upstream steno-occlusive vascular disease, including those already known to manifest reductions in vasodilatory reserve capacity or vascular steal.


Asunto(s)
Arterias , Circulación Cerebrovascular , Encéfalo , Dióxido de Carbono , Circulación Cerebrovascular/fisiología , Humanos , Hipoxia , Imagen por Resonancia Magnética
6.
Magn Reson Med ; 86(6): 3012-3021, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34687064

RESUMEN

PURPOSE: To demonstrate the feasibility of mapping cerebral perfusion metrics with BOLD MRI during modulation of pulmonary venous oxygen saturation. METHODS: A gas blender with a sequential gas delivery breathing circuit was used to implement rapid isocapnic changes in the partial pressure of oxygen of the arterial blood. Partial pressure of oxygen was initially lowered to a baseline of 40 mmHg. It was then rapidly raised to 95 mmHg for 20 s before rapidly returning to baseline. The induced cerebral changes in deoxyhemoglobin concentration were tracked over time using BOLD MRI in 6 healthy subjects and 1 patient with cerebral steno-occlusive disease. BOLD signal change, contrast-to-noise ratio, and time delay metrics were calculated. Perfusion metrics such as mean transit time, relative cerebral blood volume, and relative cerebral blood flow were calculated using a parametrized method with a mono-exponential residue function. An arterial input function from within the middle cerebral artery was used to scale relative cerebral blood volume and calculate absolute cerebral blood volume and cerebral blood flow. RESULTS: In normal subjects, average gray and white matter were: BOLD change = 6.3 ± 1.2% and 2.5 ± 0.6%, contrast-to-noise ratio = 4.3 ± 1.3 and 2.6 ± 0.7, time delay = 2.3 ± 0.6 s and 3.6 ± 0.7 s, mean transit time = 3.9 ± 0.6 s and 5.5 ± 0.6 s, relative cerebral blood volume = 3.7 ± 0.9 and 1.6 ± 0.4, relative cerebral blood flow = 70.1 ± 8.3 and 20.6 ± 4.0, cerebral blood flow volume = 4.1 ± 0.9 mL/100 g and 1.8 ± 0.5 mL/100 g, and cerebral blood flow = 97.2 ± 18.7 mL/100 g/min and 28.7 ± 5.9 mL/100 g/min. CONCLUSION: This study demonstrates that induced abrupt changes in deoxyhemoglobin can function as a noninvasive vascular contrast agent that may be used for cerebral perfusion imaging.


Asunto(s)
Circulación Cerebrovascular , Medios de Contraste , Hemoglobinas , Humanos , Imagen por Resonancia Magnética , Arteria Cerebral Media , Saturación de Oxígeno , Perfusión , Datos Preliminares
7.
Can J Neurol Sci ; 47(3): 366-373, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32051047

RESUMEN

BACKGROUND: Recent investigations now suggest that cerebrovascular reactivity (CVR) is impaired in Alzheimer's disease (AD) and may underpin part of the disease's neurovascular component. However, our understanding of the relationship between the magnitude of CVR, the speed of cerebrovascular response, and the progression of AD is still limited. This is especially true in patients with mild cognitive impairment (MCI), which is recognized as an intermediate stage between normal aging and dementia. The purpose of this study was to investigate AD and MCI patients by mapping repeatable and accurate measures of cerebrovascular function, namely the magnitude and speed of cerebrovascular response (τ) to a vasoactive stimulus in key predilection sites for vascular dysfunction in AD. METHODS: Thirty-three subjects (age range: 52-83 years, 20 males) were prospectively recruited. CVR and τ were assessed using blood oxygen level-dependent MRI during a standardized carbon dioxide stimulus. Temporal and parietal cortical regions of interest (ROIs) were generated from anatomical images using the FreeSurfer image analysis suite. RESULTS: Of 33 subjects recruited, 3 individuals were excluded, leaving 30 subjects for analysis, consisting of 6 individuals with early AD, 11 individuals with MCI, and 13 older healthy controls (HCs). τ was found to be significantly higher in the AD group compared to the HC group in both the temporal (p = 0.03) and parietal cortex (p = 0.01) following a one-way ANCOVA correcting for age and microangiopathy scoring and a Bonferroni post-hoc correction. CONCLUSION: The study findings suggest that AD is associated with a slowing of the cerebrovascular response in the temporal and parietal cortices.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Circulación Cerebrovascular/fisiología , Trastornos Cerebrovasculares/fisiopatología , Disfunción Cognitiva/fisiopatología , Lóbulo Parietal/irrigación sanguínea , Lóbulo Temporal/irrigación sanguínea , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico por imagen , Dióxido de Carbono , Estudios de Casos y Controles , Trastornos Cerebrovasculares/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Femenino , Humanos , Hipercapnia , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/fisiopatología , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/fisiopatología
8.
Hum Brain Mapp ; 40(12): 3647-3656, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31115127

RESUMEN

The purpose of this study was to determine the relationship between the organization of the brain connectome and cerebrovascular reactivity (CVR) in persons with white matter hyperintensities. Diffusion tensor and CVR mapping 3T MRI scans were acquired in 31 participants with white matter hyperintensities. In each participant, the connectome was assessed by reconstructing all white matter tracts with tractography and segmenting the whole brain into multiple regions. Graph theory analysis was performed to quantify how effectively tracts connected brain regions by measuring the global and local efficiency of the connectome. CVR in white matter and gray matter was correlated with the global and local efficiency of the connectome, while adjusting for age, gender, and gray matter volume. For comparison, white matter hyperintensity volume was also correlated with global and local efficiency. White matter CVR was positively correlated with the global efficiency (coefficient: 23.3, p = .005) and local efficiency (coefficient: 2850, p = .004) of the connectome. Gray matter CVR was positively correlated with the global efficiency (coefficient: 21.3, p < .001) and local efficiency (coefficient: 2670, p < .001) of the connectome. White matter hyperintensity volume was negatively correlated with global efficiency (coefficient: -0.0002, p = .003) and local efficiency (coefficient: -0.024, p = .003) of the connectome. The association between CVR and the brain connectome suggests that impaired cerebrovascular function may be part of the pathophysiology of the disruption of the brain connectome in persons with white matter hyperintensities.


Asunto(s)
Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular , Conectoma/métodos , Sustancia Gris/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Anciano , Anciano de 80 o más Años , Circulación Cerebrovascular/fisiología , Imagen de Difusión Tensora/métodos , Femenino , Sustancia Gris/fisiología , Humanos , Masculino , Persona de Mediana Edad , Sustancia Blanca/fisiología
9.
Neuroimage ; 181: 132-141, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29981482

RESUMEN

Cerebrovascular reactivity (CVR) is a measure of vascular response to a vasoactive stimulus, and can be used to assess the health of the brain vasculature. In this current study we used different analyses of BOLD fMRI responses to CO2 to provide a number of metrics including ramp and step CVR, speed of response and transfer function analysis (TFA). 51 healthy control volunteers between the ages of 18-85 (26 males) were recruited and scanned at 3T field strength. Atlases reflecting voxel-wise means and standard deviations were compiled to assess possible differences in these metrics between four age cohorts. Testing was carried out using an automated computer-controlled gas blender to induce hypercapnia in a step and ramp paradigm, and monitoring end-tidal partial pressures of CO2 (PETCO2) and O2 (PETO2). No significant differences were found for resting PETCO2 values between cohorts. Ramp CVR decreased significantly with age in white matter frontal regions comprising the ACA-MCA watershed area, a finding that may be indicative of age related changes. Similarly, TFA showed that gain was reduced in the left white matter ACA-MCA watershed area as well as the posterior and anterior cingulate cortex, and superior frontal gyrus in the oldest compared to youngest cohort. These findings, detailing changes in cerebrovascular regulation in the healthy aging brain should prove useful in mapping areas of dysregulated blood flow in individuals with vascular risk factors especially those at risk for developing vascular dementia.


Asunto(s)
Envejecimiento/fisiología , Dióxido de Carbono/farmacología , Corteza Cerebral/fisiología , Lóbulo Frontal/fisiología , Neuroimagen Funcional/métodos , Acoplamiento Neurovascular/fisiología , Sustancia Blanca/fisiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/diagnóstico por imagen , Femenino , Lóbulo Frontal/irrigación sanguínea , Lóbulo Frontal/diagnóstico por imagen , Giro del Cíngulo/irrigación sanguínea , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/fisiología , Humanos , Hipercapnia/inducido químicamente , Hipercapnia/diagnóstico por imagen , Hipercapnia/fisiopatología , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Corteza Prefrontal/irrigación sanguínea , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiología , Sustancia Blanca/irrigación sanguínea , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
10.
Neuroradiology ; 60(9): 933-944, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30030550

RESUMEN

PURPOSE: It is unclear how white matter hyperintensities disrupt surrounding white matter tracts. The aim of this tractography study was to determine the spatial relationship between diffusion characteristics along white matter tracts and the distance from white matter hyperintensities. METHODS: Diffusion tensor 3-T MRI scans were acquired in 29 participants with white matter hyperintensities. In each subject, tractography by the fiber assignment by continuous tracking method was used to segment corticospinal tracts. Mean diffusivity, radial diffusivity, axial diffusivity, and fractional anisotropy were measured along corticospinal tracts in relation to white matter hyperintensities. Diffusion characteristics along tracts were correlated with distance from white matter hyperintensities and were also compared between tracts traversing and not traversing white matter hyperintensities. RESULTS: In tracts not traversing through white matter hyperintensities, increasing distance from white matter hyperintensities was associated with decreased mean diffusivity (p = 0.002) and increased fractional anisotropy (p = 0.006). In tracts traversing white matter hyperintensities, compared to tracts not traversing white matter hyperintensites, the mean diffusivity was higher at 6-8 voxels, axial diffusivity higher at 4-8 voxels, and radial diffusivity higher at 7 voxels away from white matter hyperintensities (all p < 0.006). CONCLUSION: White matter hyperintensities are associated with two patterns of altered diffusion characteristics in the surrounding white matter tract network. Diffusion characteristics along white matter tracts improve further away from white matter hyperintensities suggestive of a local penumbra pattern. Also, altered diffusion extends further along tracts traversing white matter hyperintensities suggestive of a Wallerian-type degenerative pattern.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Tractos Piramidales/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Anciano , Anisotropía , Enfermedades de los Pequeños Vasos Cerebrales/patología , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Tractos Piramidales/patología , Sustancia Blanca/patología
11.
J Stroke Cerebrovasc Dis ; 27(2): 301-308, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28967593

RESUMEN

BACKGROUND: Impaired cerebrovascular reactivity (CVR) is an important prognostic marker of stroke. Most measures of CVR lack (1) a reproducible vasoactive stimulus and (2) a high time and spatial resolution measure of cerebral blood flow (CBF), particularly for mechanically ventilated patients. The aim of our study was to investigate the feasibility of measuring CVR using sequential gas delivery circuit and gas blender for precise targeting of end-tidal PCO2 (PetCO2), and blood oxygen level-dependent magnetic resonance imaging (BOLD-MRI) signal as a surrogate of CBF, in mechanically ventilated patients. METHODS: Four patients with known moyamoya disease requiring preoperative CVR measurements under general anesthesia were studied. All patients had standard anesthesia induction and maintenance with intravenous propofol and rocuronium. Patients were intubated and manually ventilated with a self-inflating bag connected to a sequential breathing circuit. A computer-controlled gas blender supplied the gas mixture in proportions to attain target PetCO2. BOLD-MRI was performed at 3.0 Tesla magnet. Changes in signal per change in PetCO2 were calculated, and their magnitude color-coded and mapped onto the anatomic scan to form CVR maps. RESULTS: CVR studies were successfully performed on all patients, and the CVR values were lower in both gray and white matter bilaterally when compared with healthy volunteers. In addition, CVR maps in 3 patients showed intracerebral steal phenomenon in spite of having had cerebral revascularization procedures, indicating that they are still at risk of cerebral ischemia. CONCLUSIONS: BOLD-MRI CVR studies are feasible in mechanically ventilated patients anesthetized with propofol.


Asunto(s)
Arterias Cerebrales/diagnóstico por imagen , Circulación Cerebrovascular , Trastornos Cerebrovasculares/diagnóstico por imagen , Hipercapnia/sangre , Imagen por Resonancia Magnética/métodos , Enfermedad de Moyamoya/diagnóstico por imagen , Oxígeno/sangre , Imagen de Perfusión/métodos , Respiración Artificial/métodos , Administración Intravenosa , Adolescente , Androstanoles/administración & dosificación , Anestesia General , Anestésicos Intravenosos/administración & dosificación , Biomarcadores , Arterias Cerebrales/metabolismo , Arterias Cerebrales/fisiopatología , Trastornos Cerebrovasculares/sangre , Trastornos Cerebrovasculares/fisiopatología , Estudios de Factibilidad , Femenino , Humanos , Hipercapnia/fisiopatología , Interpretación de Imagen Asistida por Computador , Angiografía por Resonancia Magnética , Masculino , Enfermedad de Moyamoya/sangre , Enfermedad de Moyamoya/fisiopatología , Fármacos Neuromusculares no Despolarizantes/administración & dosificación , Proyectos Piloto , Valor Predictivo de las Pruebas , Propofol/administración & dosificación , Rocuronio , Adulto Joven
13.
Hum Brain Mapp ; 38(11): 5590-5602, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28782872

RESUMEN

The ability of the cerebral vasculature to regulate vascular diameter, hence resistance and cerebral blood flow (CBF), in response to metabolic demands (neurovascular coupling), and perfusion pressure changes (autoregulation) may be assessed by measuring the CBF response to carbon dioxide (CO2 ). In healthy individuals, the CBF response to a ramp CO2 stimulus from hypocapnia to hypercapnia is assumed sigmoidal or linear. However, other response patterns commonly occur, especially in individuals with cerebrovascular disease, and these remain unexplained. CBF responses to CO2 in a vascular region are determined by the combined effects of the innate vascular responses to CO2 and the local perfusion pressure; the latter ensuing from pressure-flow interactions within the cerebral vascular network. We modeled this situation as two vascular beds perfused in parallel from a fixed resistance source. Our premise is that all vascular beds have a sigmoidal reduction of resistance in response to a progressive rise in CO2 . Surrogate CBF data to test the model was provided by magnetic resonance imaging of blood oxygen level-dependent (BOLD) signals. The model successfully generated all the various BOLD-CO2 response patterns, providing a physiological explanation of CBF distribution as relative differences in the network of vascular bed resistance responses to CO2 . Hum Brain Mapp 38:5590-5602, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular/fisiología , Hipercapnia/diagnóstico por imagen , Imagen por Resonancia Magnética , Oxígeno/sangre , Resistencia Vascular/fisiología , Encéfalo/irrigación sanguínea , Encéfalo/fisiopatología , Dióxido de Carbono/sangre , Humanos , Hipercapnia/fisiopatología , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Modelos Cardiovasculares , Modelos Neurológicos
14.
Hum Brain Mapp ; 38(7): 3415-3427, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28370825

RESUMEN

Cerebral blood flow responds to a carbon dioxide challenge, and is often assessed as cerebrovascular reactivity, assuming a linear response over a limited stimulus range or a sigmoidal response over a wider range. However, these assumed response patterns may not necessarily apply to regions with pathophysiology. Deviations from sigmoidal responses are hypothesised to result from upstream flow limitations causing competition for blood flow between downstream regions, particularly with vasodilatory stimulation; flow is preferentially distributed to regions with more reactive vessels. Under these conditions, linear or sigmoidal fitting may not fairly describe the relationship between stimulus and flow. To assess the range of response patterns and their prevalence a survey of healthy control subjects and patients with cerebrovascular disease was conducted. We used a ramp carbon dioxide challenge from hypo- to hypercapnia as the stimulus, and magnetic resonance imaging to measure the flow responses. We categorized BOLD response patterns into four types based on the signs of their linear slopes in the hypo- and hypercapnic ranges, color coded and mapped them onto their respective anatomical scans. We suggest that these type maps complement maps of linear cerebrovascular reactivity by providing a better indication of the actual response patterns. Hum Brain Mapp 38:3415-3427, 2017. © 2017 Wiley Periodicals, Inc.

15.
Ann Neurol ; 80(2): 277-85, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27352039

RESUMEN

OBJECTIVE: White matter hyperintensities (WMH) observed on neuroimaging of elderly individuals are associated with cognitive decline and disability. However, the pathogenesis of WMH remains poorly understood. We observed that regions of reduced cerebrovascular reactivity (CVR) in the white matter of young individuals correspond to the regions most susceptible to WMH in the elderly. This finding prompted us to consider that reduced CVR may play a role in the pathogenesis of WMH. We hypothesized that reduced CVR precedes development of WMH. METHODS: We examined 45 subjects (age range = 50-91 years; 25 males) with moderate-severe WMH, and measured their baseline CVR using the blood oxygen level-dependent magnetic resonance imaging signal response to a standardized step change in the end-tidal partial pressure of carbon dioxide. Diffusion tensor imaging and transverse relaxation time (T2) relaxometry were performed at baseline and 1-year follow-up, with automated coregistration between time points. Baseline fractional anisotropy (FA), mean diffusivity (MD), T2, and CVR were measured in areas that progressed from normal-appearing white matter (NAWM) to WMH over the 1-year period. RESULTS: CVR and FA values in baseline NAWM that progressed to WMH were lower by mean (standard deviation) = 26.5% (23.2%) and 11.0% (7.2%), respectively, compared to the contralateral homologous NAWM that did not progress (p < 0.001). T2 and MD were higher by 8.7% (7.9%) and 17.0% (8.5%), respectively, compared to the contralateral homologous NAWM (p < 0.001). INTERPRETATION: Areas of reduced CVR precede the progression from NAWM to WMH, suggesting that hemodynamic impairment may contribute to the pathogenesis and progression of age-related white matter disease. Ann Neurol 2016;80:277-285.


Asunto(s)
Encéfalo/irrigación sanguínea , Encéfalo/patología , Sustancia Blanca/patología , Anciano , Anciano de 80 o más Años , Envejecimiento/patología , Anisotropía , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuroimagen
16.
J Magn Reson Imaging ; 46(5): 1448-1455, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28152241

RESUMEN

PURPOSE: Blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is a technique used to infer neuronal activity from the observed changes in blood flow. Cerebrovascular reactivity (CVR) is the ability of arterioles to increase blood flow in response to vasodilatory stimulus. We hypothesize that in areas of disease where there is exhausted vascular reserve and impaired CVR there will be diminished blood flow response following neuronal activation, and that these areas would appear as false-negative tests on BOLD fMRI. MATERIALS AND METHODS: Patients with steno-occlusive disease and unilateral hemodynamic impairment received a standardized hypercapnic stimuli while being imaged with BOLD fMRI to generate CVR maps. These were compared to traditional BOLD fMRI maps of neuronal activation in the motor cortex in response to a motor task. RESULTS: Neuronal activation from the motor task was found to be linearly correlated with CVR (n = 11 patients, R = 0.82). Regions with positive (normal) CVR showed positive activation on BOLD fMRI, while regions with negative CVR had attenuated neuronal activation on BOLD fMRI. CONCLUSION: In areas with cerebrovascular disease where CVR is impaired, there is uncoupling of neuronal activation and blood flow that confounds traditional BOLD fMRI. CVR mapping is a noninvasive MRI-based imaging technique that can provide information about the vascular reactivity of the brain that is important to consider when interpreting traditional BOLD fMRI studies. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017;46:1448-1455.


Asunto(s)
Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular , Trastornos Cerebrovasculares/diagnóstico por imagen , Imagen por Resonancia Magnética , Acoplamiento Neurovascular , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Velocidad del Flujo Sanguíneo , Femenino , Hemodinámica , Humanos , Masculino , Persona de Mediana Edad , Corteza Motora/diagnóstico por imagen , Neuronas/metabolismo , Oxígeno/sangre , Consumo de Oxígeno , Probabilidad , Adulto Joven
17.
Cerebrovasc Dis ; 38(2): 94-100, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25277683

RESUMEN

UNLABELLED: The purpose of this study was to evaluate cerebrovascular reactivity (CVR) of major arterial vascular territories, particularly in the contralateral hemodynamically unaffected hemisphere, in patients with unilateral internal carotid artery (ICA) steno-occlusive disease compared to control subjects with risk factors for cerebrovascular disease. METHODS: In this retrospective observational study, twenty-seven patients with right-sided unilateral ICA steno-occlusive disease (age range, 25 to 91 years; 17 males) and twenty-one patients with left-sided unilateral ICA steno-occlusive disease (age range, 24 to 83 years; 14 males) and 41 control subjects were studied. CVR was quantitated as the change in blood oxygen level dependent (BOLD) MRI signal (as a surrogate of cerebral blood flow), in response to a consistently applied step change in the arterial partial pressure of carbon dioxide (PaCO2). The CVR of each major arterial vascular territory was assessed in the ipsilateral hemodynamically affected hemisphere and compared to the corresponding territory in the contralateral hemisphere. RESULTS: In patients, a significant reduction in CVR was observed in the ipsilateral anterior circulation compared to that of the corresponding territory on the contralateral side (0.027 ± 0.083 vs. 0.109 ± 0.066% BOLD change/​mm Hg, p < 0.0001) and to controls (0.195 ± 0.054% BOLD change/mm Hg, p < 0.0001). The CVR of the contralateral anterior circulation was reduced on average by 50% compared to controls (p < 0.0001). CONCLUSIONS: The implication of these findings is that unilateral carotid stenosis affects the vascular reserve of both sides of the brain compared to control subjects. This indicates that the collateral blood flow support from the contralateral to the ipsilateral hemisphere comes at a cost of reduced reserve capacity in the contralateral hemisphere. The findings suggest that there may be a reduction in functional hyperemia associated with neuronal activation, not only affecting the hemisphere ipsilateral to an occlusion, but also the hemisphere contralateral to an occlusion. It remains to be determined if 'stealing' from the 'rich' to support the 'poor' has clinical consequences over the long term.


Asunto(s)
Encéfalo/irrigación sanguínea , Arteria Carótida Interna/cirugía , Estenosis Carotídea/cirugía , Circulación Cerebrovascular/fisiología , Circulación Colateral/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Arteria Carótida Interna/patología , Estenosis Carotídea/diagnóstico , Femenino , Humanos , Angiografía por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Resultado del Tratamiento
18.
Radiology ; 266(2): 592-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23204541

RESUMEN

PURPOSE: To evaluate the safety, tolerability, and technical feasibility of mapping cerebrovascular reactivity (CVR) in a clinical population by using a precise prospectively targeted CO(2) stimulus and blood oxygen level-dependent (BOLD) magnetic resonance (MR) imaging. MATERIALS AND METHODS: A chart review was performed of all CVR studies from institutional review board-approved projects at a tertiary care hospital between January 1, 2006, and December 1, 2010. Informed consent was obtained. Records were searched for the incidence of adverse events and failed examinations. CVR maps were evaluated for diagnostic quality by two blinded observers and were categorized as good, diagnostic but suboptimal, or nondiagnostic. Outcomes were presented as raw data and descriptive statistics (means ± standard deviations). Intraclass correlation coefficient was used to determine interobserver variability. RESULTS: Four hundred thirty-four consecutive CVR examinations from 294 patients (51.8% female patients) were studied. Patient age ranged from 9 to 88 years (mean age, 45.9 years ± 20.6). Transient symptoms, such as shortness of breath, headache, and dizziness, were reported in 48 subjects (11.1% of studies) during hypercapnic phases only. There were no neurologic ischemic events, myocardial infarctions, or other major complications. The success rate in generating CVR maps was 83.9% (364 of 434). Of the 70 (16.1%) failed examinations, 25 (35.7%) were due to discomfort; eight (11.4%), to head motion; two (2.9%), to inability to cooperate; seven (10.0%), to technical difficulties with equipment; and 28 (40.0%), to unknown or unspecified conditions. Among the 364 remaining successful examinations, good quality CVR maps were obtained in 340 (93.4%); diagnostic but suboptimal, in 12 (3.3%); and nondiagnostic, in 12 (3.3%). CONCLUSION: CVR mapping by using a prospectively targeted CO(2) stimulus and BOLD MR imaging is safe, well tolerated, and technically feasible in a clinical patient population.


Asunto(s)
Dióxido de Carbono/sangre , Circulación Cerebrovascular , Imagen por Resonancia Magnética/métodos , Oxígeno/sangre , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Variaciones Dependientes del Observador , Estudios Retrospectivos
19.
Front Physiol ; 14: 1167857, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37250139

RESUMEN

Introduction: Use of contrast in determining hemodynamic measures requires the deconvolution of an arterial input function (AIF) selected over a voxel in the middle cerebral artery to calculate voxel wise perfusion metrics. Transfer function analysis (TFA) offers an alternative analytic approach that does not require identifying an AIF. We hypothesised that TFA metrics Gain, Lag, and their ratio, Gain/Lag, correspond to conventional AIF resting perfusion metrics relative cerebral blood volume (rCBV), mean transit time (MTT) and relative cerebral blood flow (rCBF), respectively. Methods: 24 healthy participants (17 M) and 1 patient with steno-occlusive disease were recruited. We used non-invasive transient hypoxia-induced deoxyhemoglobin as an MRI contrast. TFA and conventional AIF analyses were used to calculate averages of whole brain and smaller regions of interest. Results: Maps of these average metrics had colour scales adjusted to enhance contrast and identify areas of high congruence. Regional gray matter/white matter (GM/WM) ratios for MTT and Lag, rCBF and Gain/Lag, and rCBV and Gain were compared. The GM/WM ratios were greater for TFA metrics compared to those from AIF analysis indicating an improved regional discrimination. Discussion: Resting perfusion measures generated by The BOLD analysis resulting from a transient hypoxia induced variations in deoxyhemoglobin analyzed by TFA are congruent with those analyzed by conventional AIF analysis.

20.
J Cereb Blood Flow Metab ; 43(12): 2085-2095, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37632334

RESUMEN

Evaluation of cerebrovascular reactivity (CVR) to hypo- and hypercapnia is a valuable test for the assessment of vasodilatory reserve. While hypercapnia-induced CVR testing is usually performed at normoxia, mild hyperoxia may increase tolerability of hypercapnia by reducing the ventilatory distress. However, the effects of mild hyperoxia on CVR was unknown. We therefore recruited 21 patients with a range of steno-occlusive diseases and 12 healthy participants who underwent a standardized 13-minute step plus ramp CVR test with a carbon dioxide gas challenge at the subject's resting end-tidal partial pressure of oxygen or at mild hyperoxia (PetO2 = 150 mmHg) depending on to which group they were assigned. In 11 patients, the second CVR test was at normoxia to examine test-retest differences. CVR was defined as % Δ Signal/ΔPetCO2. We found that there was no significant difference between CVR test results conducted at normoxia and at mild hyperoxia for participants in Groups 1 and 2 for the step and ramp portion. We also found no difference between test and retest CVR at normoxia for patients with cerebrovascular pathology (Group 3) for step and ramp portion. We concluded normoxic CVR is repeatable, and that mild hyperoxia does not affect CVR.


Asunto(s)
Hipercapnia , Hiperoxia , Humanos , Oxígeno/metabolismo , Presión Parcial , Circulación Cerebrovascular/fisiología , Imagen por Resonancia Magnética/métodos , Dióxido de Carbono/metabolismo , Encéfalo/irrigación sanguínea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA