Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Eur Respir J ; 60(5)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35798357

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease associated with chronic inflammation and tissue remodelling leading to fibrosis, reduced pulmonary function, respiratory failure and death. Bleomycin (Blm)-induced lung fibrosis in mice replicates several clinical features of human IPF, including prominent lymphoid aggregates of predominantly B-cells that accumulate in the lung adjacent to areas of active fibrosis. We have shown previously a requirement for B-cells in the development of Blm-induced lung fibrosis in mice. To determine the therapeutic potential of inhibiting B-cell function in pulmonary fibrosis, we examined the effects of anti-CD20 B-cell ablation therapy to selectively remove mature B-cells from the immune system and inhibit Blm-induced lung fibrosis. Anti-CD20 B-cell ablation did not reduce fibrosis in this model; however, immune phenotyping of peripheral blood and lung resident cells revealed that anti-CD20-treated mice retained a high frequency of CD19+ CD138+ plasma cells. Interestingly, high levels of CD138+ cells were also identified in the lung tissue of patients with IPF, consistent with the mouse model. Treatment of mice with bortezomib, which depletes plasma cells, reduced the level of Blm-induced lung fibrosis, implicating plasma cells as important effector cells in the development and progression of pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares Intersticiales , Humanos , Ratones , Animales , Bleomicina/farmacología , Células Plasmáticas , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Pulmón/metabolismo , Enfermedades Pulmonares Intersticiales/inducido químicamente
2.
Am J Physiol Lung Cell Mol Physiol ; 321(5): L859-L871, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34524912

RESUMEN

Alveolar epithelial cell (AEC) senescence is implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Mitochondrial dysfunction including release of mitochondrial DNA (mtDNA) is a feature of senescence, which led us to investigate the role of the DNA-sensing guanine monophosphate-adenine monophosphate (GMP-AMP) synthase (cGAS) in IPF, with a focus on AEC senescence. cGAS expression in fibrotic tissue from lungs of patients with IPF was detected within cells immunoreactive for epithelial cell adhesion molecule (EpCAM) and p21, epithelial and senescence markers, respectively. Submerged primary cultures of AECs isolated from lung tissue of patients with IPF (IPF-AECs, n = 5) exhibited higher baseline senescence than AECs from control donors (Ctrl-AECs, n = 5-7), as assessed by increased nuclear histone 2AXγ phosphorylation, p21 mRNA, and expression of senescence-associated secretory phenotype (SASP) cytokines. Pharmacological cGAS inhibition using RU.521 diminished IPF-AEC senescence in culture and attenuated induction of Ctrl-AEC senescence following etoposide-induced DNA damage. Short interfering RNA (siRNA) knockdown of cGAS also attenuated etoposide-induced senescence of the AEC line, A549. Higher levels of mtDNA were detected in the cytosol and culture supernatants of primary IPF- and etoposide-treated Ctrl-AECs when compared with Ctrl-AECs at baseline. Furthermore, ectopic mtDNA augmented cGAS-dependent senescence of Ctrl-AECs, whereas DNAse I treatment diminished IPF-AEC senescence. This study provides evidence that a self-DNA-driven, cGAS-dependent response augments AEC senescence, identifying cGAS as a potential therapeutic target for IPF.


Asunto(s)
Células Epiteliales Alveolares/patología , Senescencia Celular/fisiología , Daño del ADN/genética , Fibrosis Pulmonar Idiopática/patología , Nucleotidiltransferasas/metabolismo , Células A549 , Benzofuranos/farmacología , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Citocinas/biosíntesis , ADN Mitocondrial/metabolismo , Desoxirribonucleasa I/farmacología , Molécula de Adhesión Celular Epitelial/metabolismo , Etopósido/farmacología , Humanos , Mitocondrias/genética , Mitocondrias/patología , Nucleotidiltransferasas/antagonistas & inhibidores , Nucleotidiltransferasas/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Transducción de Señal/fisiología
3.
Exp Dermatol ; 30(8): 1099-1114, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34152651

RESUMEN

Keloid scarring is a fibroproliferative disorder of the skin with unknown pathophysiology, characterised by fibrotic tissue that extends beyond the boundaries of the original wound. Therapeutic options are few and commonly ineffective, with keloids very commonly recurring even after surgery and adjunct treatments. Epigenetics, defined as alterations to the DNA not involving the base-pair sequence, is a key regulator of cell functions, and aberrant epigenetic modifications have been found to contribute to many pathologies. Multiple studies have examined many different epigenetic modifications in keloids, including DNA methylation, histone modification, microRNAs and long non-coding RNAs. These studies have established that epigenetic dysregulation exists in keloid scars, and successful future treatment of keloids may involve reverting these aberrant modifications back to those found in normal skin. Here we summarise the clinical and experimental studies available on the epigenetics of keloids, discuss the major open questions and future perspectives on the treatment of this disease.


Asunto(s)
Epigénesis Genética , Queloide/genética , Reprogramación Celular/genética , Metilación de ADN/genética , Regulación de la Expresión Génica , Histonas/genética , Humanos
4.
Am J Respir Cell Mol Biol ; 61(1): 61-73, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30608861

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease of unknown cause with a median survival of only 3 years. Other investigators and we have shown that fibroblasts derived from IPF lungs display characteristics of senescent cells, and that dysregulated activation of the transcription factor signal transducer and activator of transcription 3 (STAT3) correlates with IPF progression. The question of whether STAT3 activation is involved in fibroblast senescence remains unanswered. We hypothesized that inhibiting STAT3 activation after oxidant-induced senescence would attenuate characteristics of the senescent phenotype. We aimed to characterize a model of oxidant-induced senescence in human lung fibroblasts and to determine the effect of inhibiting STAT3 activity on the development of senescence. Exposing human lung fibroblasts to 150 µM hydrogen peroxide (H2O2) resulted in increased senescence-associated ß-galactosidase content and expression of p21 and IL-6, all of which are features of senescence. The shift into senescence was accompanied by an increase of STAT3 translocation to the nucleus and mitochondria. Additionally, Seahorse analysis provided evidence of increased mitochondrial respiration characterized by increased basal respiration, proton leak, and an associated increase in superoxide (O2-) production in senescent fibroblasts. Targeting STAT3 activity using the small-molecule inhibitor STA-21 attenuated IL-6 production, reduced p21 levels, decreased senescence-associated ß-galactosidase accumulation, and restored normal mitochondrial function. The results of this study illustrate that stress-induced senescence in lung fibroblasts involves the activation of STAT3, which can be pharmacologically modulated.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Fibroblastos/patología , Pulmón/patología , Oxidantes/toxicidad , Factor de Transcripción STAT3/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Respiración de la Célula/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fenotipo , Fosforilación/efectos de los fármacos , Compuestos Policíclicos/farmacología , Transporte de Proteínas/efectos de los fármacos
5.
Biochem Biophys Res Commun ; 510(2): 198-204, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30685089

RESUMEN

Malignant mesothelioma is an aggressive fibrous tumor, predominantly of the pleura, with a very poor prognosis. Cell-matrix interactions are recognized important determinants of tumor growth and invasiveness but the role of the extracellular matrix in mesothelioma is unknown. Mesothelioma cells synthesize collagen as well as transforming growth factor-beta (TGF-ß), a key regulator of collagen production. This study examined the effect of inhibiting collagen production on mesothelioma cell proliferation in vitro and tumor growth in vivo. Collagen production by mesothelioma cells was inhibited by incubating cells in vitro with the proline analogue thiaproline (thiazolidine-4-carboxylic acid) or by oral administration of thiaproline in a murine tumor model. Cell cytotoxicity was measured using neutral red uptake and lactate dehydrogenase assays. Proliferation was measured by tritiated thymidine incorporation, and inflammatory cell influx, proliferation, apoptosis and angiogenesis in tumors examined by immunohistochemical labelling. Tumor size was determined by tumor weight and collagen production was measured by HPLC. Thiaproline at non-toxic doses significantly reduced basal and TGF-ß-induced collagen production by over 50% and cell proliferation by over 65%. In vivo thiaproline administration inhibited tumor growth at 10 days, decreasing the median tumor weight by 80%. The mean concentration of collagen was 50% lower in the thiaproline-treated tumors compared with the controls. There were no significant differences in vasculature or inflammatory cell infiltration but apoptosis was increased in thiaproline treated tumors at day 10. In conclusion, these observations strongly support a role for collagen in mesothelioma growth and establish the potential for inhibitors of collagen synthesis in mesothelioma treatment.


Asunto(s)
Colágeno/biosíntesis , Neoplasias Pulmonares/metabolismo , Mesotelioma/metabolismo , Neoplasias Pleurales/metabolismo , Animales , Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Colágeno/antagonistas & inhibidores , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Femenino , Humanos , Inflamación , Neoplasias Pulmonares/patología , Mesotelioma/patología , Mesotelioma Maligno , Ratones , Ratones Endogámicos CBA , Neoplasias Pleurales/patología , Tiazolidinas/farmacología , Factor de Crecimiento Transformador beta/metabolismo
6.
J Cell Mol Med ; 22(12): 5847-5861, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30255990

RESUMEN

Increasing evidence highlights that senescence plays an important role in idiopathic pulmonary fibrosis (IPF). This study delineates the specific contribution of mitochondria and the superoxide they form to the senescent phenotype of lung fibroblasts from IPF patients (IPF-LFs). Primary cultures of IPF-LFs exhibited an intensified DNA damage response (DDR) and were more senescent than age-matched fibroblasts from control donors (Ctrl-LFs). Furthermore, IPF-LFs exhibited mitochondrial dysfunction, exemplified by increases in mitochondrial superoxide, DNA, stress and activation of mTORC1. The DNA damaging agent etoposide elicited a DDR and augmented senescence in Ctrl-LFs, which were accompanied by disturbances in mitochondrial homoeostasis including heightened superoxide production. However, etoposide had no effect on IPF-LFs. Mitochondrial perturbation by rotenone involving sharp increases in superoxide production also evoked a DDR and senescence in Ctrl-LFs, but not IPF-LFs. Inhibition of mTORC1, antioxidant treatment and a mitochondrial targeting antioxidant decelerated IPF-LF senescence and/or attenuated pharmacologically induced Ctrl-LF senescence. In conclusion, increased superoxide production by dysfunctional mitochondria reinforces lung fibroblast senescence via prolongation of the DDR. As part of an auto-amplifying loop, mTORC1 is activated, altering mitochondrial homoeostasis and increasing superoxide production. Deeper understanding the mechanisms by which mitochondria contribute to fibroblast senescence in IPF has potentially important therapeutic implications.


Asunto(s)
Senescencia Celular , Fibroblastos/patología , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Mitocondrias/patología , Acetilcisteína/farmacología , Biomarcadores/metabolismo , Senescencia Celular/efectos de los fármacos , Óxidos N-Cíclicos/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Etopósido/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Rotenona/farmacología , Sirolimus/farmacología
7.
Am J Physiol Lung Cell Mol Physiol ; 315(2): L162-L172, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29696986

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic fibrosing interstitial pneumonia of unknown cause with a median survival of only three years. Little is known about the mechanisms that precede the excessive collagen deposition seen in IPF, but cellular senescence has been strongly implicated in disease pathology. Senescence is a state of irreversible cell-cycle arrest accompanied by an abnormal secretory profile and is thought to play a critical role in both development and wound repair. Normally, once a senescent cell has contributed to wound repair, it is promptly removed from the environment via infiltrating immune cells. However, if immune clearance fails, the persistence of senescent cells is thought to drive disease pathology through their altered secretory profile. One of the major cell types involved in wound healing is fibroblasts, and senescent fibroblasts have been identified in the lungs of patients with IPF and in fibroblast cultures from IPF lungs. The question of what is driving abnormally high numbers of fibroblasts into senescence remains unanswered. The transcription factor signal transducer and activator of transcription 3 (STAT3) plays a role in a myriad of processes, including cell-cycle progression, gene transcription, as well as mitochondrial respiration, all of which are dysregulated during senescence. Activation of STAT3 has previously been shown to correlate with IPF progression and therefore is a potential molecular target to modify early-stage senescence and restore normal fibroblast function. This review summarizes what is presently known about fibroblast senescence in IPF and how STAT3 may contribute to this phenotype.


Asunto(s)
Senescencia Celular , Fibroblastos , Regulación de la Expresión Génica , Fibrosis Pulmonar Idiopática , Pulmón , Transducción de Señal , Animales , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Pulmón/metabolismo , Pulmón/patología
8.
Immunol Cell Biol ; 95(7): 577-583, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28356570

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is the most common of the idiopathic interstitial pneumonias. It is typically associated with extensive and progressive fibrosis, and is fatal and has limited treatment options. Characteristically IPF patients display large lymphocyte aggregates composed of CD3+ T cells and CD20+ B cells within the lung tissue that are located near sites of active fibrosis. In addition, IPF patients can have autoantibodies to a range of host antigens, suggesting a breakdown in immunological tolerance. In this review, we examine the role of T and B cells in IPF pathogenesis and discuss how loss of self-tolerance to lung-specific proteins could exacerbate disease progression in IPF. We discuss what these results mean in terms of future prospects for immunotherapy of IPF.


Asunto(s)
Autoinmunidad , Fibrosis Pulmonar Idiopática/inmunología , Animales , Linfocitos B/inmunología , Humanos , Fibrosis Pulmonar Idiopática/patología , Tolerancia Inmunológica , Modelos Inmunológicos
9.
Respir Res ; 16: 118, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26415510

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a rapid progressive fibro-proliferative disorder with poor prognosis similar to lung cancer. The pathogenesis of IPF is uncertain, but loss of epithelial cells and fibroblast proliferation are thought to be central processes. Previous reports have shown that BARD1 expression is upregulated in response to hypoxia and associated with TGF-ß signaling, both recognized factors driving lung fibrosis. Differentially spliced BARD1 isoforms, in particular BARD1ß, are oncogenic drivers of proliferation in cancers of various origins. We therefore hypothesized that BARD1 and/or its isoforms might play a role in lung fibrosis. METHODS: We investigated BARD1 expression as a function of TGF-ß in cultured cells, in mice with experimentally induced lung fibrosis, and in lung biopsies from pulmonary fibrosis patients. RESULTS: FL BARD1 and BARD1ß were upregulated in response to TGF-ß in epithelial cells and fibroblasts in vitro and in vivo. Protein and mRNA expression studies showed very low expression in healthy lung tissues, but upregulated expression of full length (FL) BARD1 and BARD1ß in fibrotic tissues. CONCLUSION: Our data suggest that FL BARD1 and BARD1ß might be mediators of pleiotropic effects of TGF-ß. In particular BARD1ß might be a driver of proliferation and of pulmonary fibrosis pathogenesis and progression and represent a target for treatment.


Asunto(s)
Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/efectos de los fármacos , Factor de Crecimiento Transformador beta1/farmacología , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Bleomicina , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Isoformas de Proteínas , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética
10.
Am J Pathol ; 180(4): 1398-412, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22322297

RESUMEN

STAT3 is a latent transcription factor that plays a role in regulating fibroblast function in fibrotic lung diseases. To further understand the role of STAT3 in the phenotypic divergence and function of human lung fibroblasts (LFs), we investigated the effect of basal and cytokine-induced STAT3 activity on indices of LF differentiation and activation, including expression of α-smooth muscle actin (α-SMA), collagen, and adhesion molecules Thy-1/CD90 and α(v) ß(3) and ß(5) integrins. We identified a population of fibroblasts from usual interstitial pneumonia (UIP)/idiopathic pulmonary fibrosis (IPF) lungs characterized by constitutively phosphorylated STAT3, lower proliferation rates, and diminished expression of α-SMA, Thy-1/CD90, and ß(3) integrins compared with control LFs. Staining of UIP lung biopsy specimens demonstrated that phosphorylated STAT3 was not present in α-SMA-positive fibroblastic foci but was observed in the nuclei of cells located in the areas of dense fibrosis. STAT3 activation in LFs did not significantly influence basal or transforming growth factor ß(1)-induced collagen I expression but inhibited expression of α-SMA, Thy-1/CD90, and αv ß(3) integrins. Suppression of STAT3 signaling diminished resistance of IPF LFs to staurosporine-induced apoptosis and responsiveness to transforming growth factor ß(1) but increased basal α-SMA and restored ß(3) integrin expression in LFs via an ALK-5-dependent, SMAD3/7-independent mechanism. These data suggest that STAT3 activation regulates several pathways in human LFs associated with normal wound healing, whereas aberrant STAT3 signaling plays a critical role in UIP/IPF pathogenesis.


Asunto(s)
Fibroblastos/patología , Fibrosis Pulmonar Idiopática/patología , Factor de Transcripción STAT3/fisiología , Actinas/metabolismo , Apoptosis/fisiología , Diferenciación Celular/fisiología , Proliferación Celular , Células Cultivadas , Colágeno Tipo I/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Humanos , Fibrosis Pulmonar Idiopática/fisiopatología , Integrina alfaVbeta3/metabolismo , Interleucina-6/farmacología , Pulmón/metabolismo , Pulmón/patología , Miofibroblastos/metabolismo , Miofibroblastos/patología , Oncostatina M/farmacología , Proteínas Serina-Treonina Quinasas/fisiología , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/fisiología , Proteínas Recombinantes/farmacología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/fisiología , Antígenos Thy-1/metabolismo , Transducción Genética , Factor de Crecimiento Transformador beta1/farmacología
11.
BMC Mol Cell Biol ; 24(1): 16, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37062833

RESUMEN

BACKGROUND: Hypoxic culture conditions have been used to study the impact of oxygen deprivation has on gene expression in a number of disease models. However, hypoxia response elements present in the promoter regions of some commonly used housekeeping genes, such as GAPDH and PGK1, can confound the relative gene expression analysis. Thus, there is ongoing debate as to which housekeeping gene is appropriate for studies investigating hypoxia-induced cell responses. Specifically, there is still contradicting information for which housekeeping genes are stable in hypoxia cultures of mesenchymal stem cells. In this study, candidate housekeeping genes curated from the literature were matched to RNAseq data of normoxic and hypoxic human adipose-derived stem cell cultures to determine if gene expression was modulated by hypoxia or not. Expression levels of selected candidates were used to calculate coefficient of variation. Then, accounting for the mean coefficient of variation, and normalised log twofold change, genes were ranked and shortlisted, before validating with qRT-PCR. Housekeeping gene suitability were then determined using GeNorm, NormFinder, BestKeeper, comparative[Formula: see text], RefFinder, and the Livak method. RESULTS: Gene expression levels of 78 candidate genes identified in the literature were analysed in the RNAseq dataset generated from hADSC cultured under Nx and Hx conditions. From the dataset, 15 candidates with coefficient of variation ≤ 0.15 were identified, where differential expression analysis results further shortlisted 8 genes with least variation in expression levels. The top 4 housekeeping gene candidates, ALAS1, RRP1, GUSB, and POLR2B, were chosen for qRT-PCR validation. Additionally, 18S, a ribosomal RNA commonly used as housekeeping gene but not detected in the RNAseq method, was added to the list of housekeeping gene candidates to validate. From qRT-PCR results, 18S and RRP1 were determined to be stably expressed in cells cultured under hypoxic conditions. CONCLUSIONS: We have demonstrated that 18S and RRP1 are suitable housekeeping genes for use in hypoxia studies with human adipose-derived stem cell and should be used in combination. Additionally, these data shown that the commonly used GAPDH and PGK1 are not suitable housekeeping genes for investigations into the effect of hypoxia in human adipose-derived stem cell.


Asunto(s)
Genes Esenciales , Células Madre Mesenquimatosas , Humanos , Genes Esenciales/genética , RNA-Seq , Perfilación de la Expresión Génica/métodos , Hipoxia/genética , ARN Polimerasa II
12.
Pharmacol Ther ; 252: 108562, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37952904

RESUMEN

The pathogenesis of pulmonary fibrosis, including idiopathic pulmonary fibrosis (IPF) and other forms of interstitial lung disease, involves a complex interplay of various factors including host genetics, environmental pollutants, infection, aberrant repair and dysregulated immune responses. Highly variable clinical outcomes of some ILDs, in particular IPF, have made it difficult to identify the precise mechanisms involved in disease pathogenesis and thus the development of a specific cure or treatment to halt and reverse the decline in patient health. With the advent of in-depth molecular diagnostics, it is becoming evident that the pathogenesis of IPF is unlikely to be the same for all patients and therefore will likely require different treatment approaches. Chronic inflammation is a cardinal feature of IPF and is driven by both innate and adaptive immune responses. Inflammatory cells and activated fibroblasts secrete various pro-inflammatory cytokines and chemokines that perpetuate the inflammatory response and contribute to the recruitment and activation of more immune cells and fibroblasts. The balance between pro-inflammatory and regulatory immune cell subsets, as well as the interactions between immune cell types and resident cells within the lung microenvironment, ultimately determines the extent of fibrosis and the potential for resolution. This review examines the role of the innate and adaptive immune responses in pulmonary fibrosis, with an emphasis on IPF. The role of different immune cell types is discussed as well as novel anti-inflammatory and immunotherapy approaches currently in clinical trial or in preclinical development.


Asunto(s)
Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares Intersticiales , Humanos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Pulmón/metabolismo , Fibrosis , Inflamación/patología
13.
Heliyon ; 9(9): e19343, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37662829

RESUMEN

Cochlear implants (CIs) allow individuals with profound hearing loss to understand speech and perceive sounds. However, not all patients obtain the full benefits that CIs can provide and the cause of this disparity is not fully understood. One possible factor for the variability in outcomes after cochlear implantation, is the development of fibrotic scar tissue around the implanted electrode. It has been hypothesised that limiting the extent of fibrosis after implantation may improve overall CI function, and longevity of the device. Currently, histology is often used to quantify the extent of intracochlear tissue growth after implantation however this method is labour intensive, time-consuming, often involves significant user bias, and causes physical distortion of the fibrosis. Therefore, this study aimed to evaluate x-ray micro computed tomography (µCT) as a method to measure the amount and distribution of fibrosis in a guinea pig model of cochlear implantation. Adult guinea pigs were implanted with an inactive electrode, and cochleae harvested eight weeks later (n = 7) and analysed using µCT, to quantify the extent of tissue reaction, followed by histological analysis to confirm that the tissue was indeed fibrotic. Cochleae harvested from an additional six animals following implantation were analysed by µCT, before and after contrast staining with osmium tetroxide (OsO4), to enhance the visualisation of soft tissues within the cochlea, including the tissue reaction. Independent analysis by two observers showed that the quantification method was robust and provided additional information on the distribution of the response within the cochlea. Histological analysis revealed that µCT visualised dense collagenous material and new bone formation but did not capture loose, areolar fibrotic tissue. Treatment with OsO4 significantly enhanced the visible tissue reaction detected using µCT. Overall, µCT is an alternative and reliable method that can be used to quantify the extent of the CI-induced intracochlear tissue response and will be a useful tool for the in vivo assessment of novel anti-fibrotic treatments.

14.
Cytokine ; 58(3): 415-23, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22484241

RESUMEN

The anti-inflammatory actions of IL-4 in activated human monocytes may reflect transcriptional regulation of genes involved in TLR signaling pathways. Tailored gene arrays were conducted to profile the expression of 84 genes central to TLR-mediated signal transduction in human monocytes treated with the TLR4 ligand, LPS, with or without IL-4. In the first 3h, IL-4 down-regulated mRNA levels of LPS-induced inflammatory cytokines and chemokines, without altering mRNA levels of TLRs, TLR-related signaling molecules or multiple transcription factors. The down-regulation of inflammatory genes by IL-4 was preceded by an early up-regulation of IL-10 mRNA and protein and mRNA for receptor-interacting serine-threonine kinase 2 (RIPK2), the TLR homolog, RP105, and c-Maf, a transcription factor required for IL-10 gene expression. However, IL-4 still suppressed LPS-induced TNFα production in bone-marrow derived macrophages from IL10(-/-) mice, and in the presence of a neutralizing antibody to IL-10 in human monocytes. The up-regulation of RIPK2 and RP105 mRNA by IL-4 occurred independently of IL-10. IL-4 maintained the ability to suppress LPS-induced TNFα and enhance IL-10 production in the presence of RIPK2 kinase inhibitors. Further, IL-4 failed to up-regulate expression of RP105 at the cell surface. In conclusion, the anti-inflammatory actions of IL-4 occur independently of IL-10, RP105, and the kinase activity of RIPK2.


Asunto(s)
Antígenos CD/fisiología , Inflamación/prevención & control , Interleucina-10/fisiología , Interleucina-4/fisiología , Monocitos/fisiología , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/fisiología , Animales , Secuencia de Bases , Cartilla de ADN , Citometría de Flujo , Humanos , Interleucina-10/genética , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa
15.
J Cell Mol Med ; 15(10): 2095-105, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21070599

RESUMEN

Serosal pathologies including malignant mesothelioma (MM) can show features of osseous and/or cartilaginous differentiation although the mechanism for its formation is unknown. Mesothelial cells have the capacity to differentiate into cells with myofibroblast, smooth muscle and endothelial cell characteristics. Whether they can differentiate into other cell types is unclear. This study tests the hypothesis that mesothelial cells can differentiate into cell lineages of the embryonic mesoderm including osteoblasts and adipocytes. To examine this, a functional assay of bone formation and an adipogenic assay were performed in vitro with primary rat and human mesothelial cells maintained in osteogenic or adipogenic medium (AM) for 0-26 days. Mesothelial cells expressed increasing levels of alkaline phosphatase, an early marker of the osteoblast phenotype, and formed mineralized bone-like nodules. Mesothelial cells also accumulated lipid indicative of a mature adipocyte phenotype when cultured in AM. All cells expressed several key osteoblast and adipocyte markers, including osteoblast-specific runt-related transcription factor 2, and demonstrated changes in mRNA expression consistent with epithelial-to-mesenchymal transition. In conclusion, these studies confirm that mesothelial cells have the capacity to differentiate into osteoblast- and adipocyte-like cells, providing definitive evidence of their multipotential nature. These data strongly support mesothelial cell differentiation as the potential source of different tissue types in MM tumours and other serosal pathologies, and add support for the use of mesothelial cells in regenerative therapies.


Asunto(s)
Adipocitos/citología , Epitelio/crecimiento & desarrollo , Mesodermo/citología , Mesotelioma/metabolismo , Osteoblastos/citología , Adipogénesis/genética , Anciano , Anciano de 80 o más Años , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Diferenciación Celular , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Expresión Génica , Humanos , Metabolismo de los Lípidos , Mesodermo/embriología , Persona de Mediana Edad , Osteogénesis/genética , Ratas
16.
Pulm Pharmacol Ther ; 24(2): 193-8, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20951825

RESUMEN

Fibrosis is defined as an excessive deposition of connective tissue components that results in the destruction of normal tissue architecture and compromises organ function. When fibrosis occurs in the major organs such as the lung, for example in idiopathic pulmonary fibrosis, it inevitably leads to organ failure and premature death of the afflicted individual. Current evidence suggests that fibrosis initially develops along the same pathway as normal wound healing, although there is chronic progression of the disease without resolution, suggesting the control of intracellular processes that occur during wound healing is disturbed. It follows then that determining where this control is lost is key to preventing and treating this condition. The IL-6 cytokine family is a group of pleiotropic cytokines produced by a variety of cells in response to inflammatory stimuli. These cytokines are grouped together on the basis of overlapping functions, and common usage of gp130 as part of their multimeric receptor complexes. Activation of these receptor complexes results in the recruitment and phosphorylation of the latent transcription factor STAT-3 which induces a gene program involved in cell differentiation and proliferation. STAT3 also induces expression of a number of inhibitors including SOCS-3. In this manuscript we review the available literature on the IL-6/gp-130 family of cytokines and their role in regulating fibrosis. Despite a large number of studies in mouse models as well as human cells in vitro, the role of these cytokines or STAT3 activated by other cytokines in the development of fibrosis remains unclear.


Asunto(s)
Receptor gp130 de Citocinas/metabolismo , Fibrosis Pulmonar Idiopática/patología , Interleucina-6/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Progresión de la Enfermedad , Fibrosis , Humanos , Fibrosis Pulmonar Idiopática/complicaciones , Ratones , Insuficiencia Multiorgánica/etiología
17.
J Dermatol Sci ; 104(1): 11-20, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34538705

RESUMEN

BACKGROUND: Fibroblasts found in keloid tissues are known to present an altered sensitivity to microenvironmental stimuli. However, the impact of changes in extracellular matrix stiffness on phenotypes of normal fibroblasts (NFs) and keloid fibroblasts (KFs) is poorly understood. OBJECTIVES: Investigation the impact of matrix stiffness on NFs and KFs mainly via detecting yes-associated protein (YAP) expression. METHODS: We used fibronectin-coated polyacrylamide hydrogel substrates with a range from physiological to pathological stiffness values with or without TGF-ß (fibrogenic inducer). Atomic force microscopy was used to measure the stiffness of fibroblasts. Cellular mechanoresponses were screened by immunocytochemistry, Western blot and Luminex assay. RESULTS: KFs are stiffer than NFs with greater expression of α-SMA. In NFs, YAP nuclear translocation was induced by increasing matrix stiffness as well as by stimulation with TGF-ß. In contrast, KFs showed higher baseline levels of nuclear YAP that was not responsive to matrix stiffness or TGF-ß. TGF-ß1 induced p-SMAD3 in both KFs and NFs, demonstrating the pathway was functional and not hyperactivated in KFs. Moreover, blebbistatin suppressed α-SMA expression and cellular stiffness in KFs, linking the elevated YAP signaling to keloid phenotype. CONCLUSIONS: These data suggest that whilst normal skin fibroblasts respond to matrix stiffness in vitro, keloid fibroblasts have elevated activation of mechanotransduction signaling insensitive to the microenvironment. This elevated signaling appears linked to the expression of α-SMA, suggesting a direct link to disease pathogenesis. These findings suggest changes to keloid fibroblast phenotype related to mechanotransduction contribute to disease and may be a useful therapeutic target.


Asunto(s)
Fibroblastos/metabolismo , Queloide/patología , Mecanotransducción Celular , Piel/patología , Actinas/metabolismo , Adolescente , Adulto , Anciano , Células Cultivadas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Cultivo Primario de Células , Transducción de Señal , Piel/citología , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Señalizadoras YAP/metabolismo
18.
Biomedicines ; 9(5)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946612

RESUMEN

The interleukin (IL)-6 family of cytokines and exaggerated signal transducer and activator of transcription (STAT)3 signaling is implicated in idiopathic pulmonary fibrosis (IPF) pathogenesis, but the mechanisms regulating STAT3 expression and function are unknown. Suppressor of cytokine signaling (SOCS)1 and SOCS3 block STAT3, and low SOCS1 levels have been reported in IPF fibroblasts and shown to facilitate collagen production. Fibroblasts and lung tissue from IPF patients and controls were used to examine the mechanisms underlying SOCS1 down-regulation in IPF. A significant reduction in basal SOCS1 mRNA in IPF fibroblasts was confirmed. However, there was no difference in the kinetics of activation, and methylation of SOCS1 in control and IPF lung fibroblasts was low and unaffected by 5'-aza-2'-deoxycytidine' treatment. SOCS1 is a target of microRNA-155 and although microRNA-155 levels were increased in IPF tissue, they were reduced in IPF fibroblasts. Therefore, SOCS1 is not regulated by SOCS1 gene methylation or microRNA155 in these cells. In conclusion, we confirmed that IPF fibroblasts had lower levels of SOCS1 mRNA compared with control fibroblasts, but we were unable to determine the mechanism. Furthermore, although SOCS1 may be important in the fibrotic process, we were unable to find a significant role for SOCS1 in regulating fibroblast function.

19.
Biomedicines ; 9(9)2021 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-34572347

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic disease characterised by a dense fibrosing of the lung parenchyma. An association between IPF and cellular senescence is well established and several studies now describe a higher abundance of senescent fibroblasts and epithelial cells in the lungs of IPF patients compared with age-matched controls. The cause of this abnormal accumulation of senescent cells is unknown but evidence suggests that, once established, senescence can be transferred from senescent to non-senescent cells. In this study, we investigated whether senescent human lung fibroblasts (LFs) and alveolar epithelial cells (AECs) could induce a senescent-like phenotype in "naïve" non-senescent LFs in vitro. Primary cultures of LFs from adult control donors (Ctrl-LFs) with a low baseline of senescence were exposed to conditioned medium (CM) from: (i) Ctrl-LFs induced to become senescent using H2O2 or etoposide; (ii) LFs derived from IPF patients (IPF-LFs) with a high baseline of senescence; or (iii) senescence-induced A549 cells, an AEC line. Additionally, ratios of non-senescent Ctrl-LFs and senescence-induced Ctrl-LFs (100:0, 0:100, 50:50, 90:10, 99:1) were co-cultured and their effect on induction of senescence measured. We demonstrated that exposure of naïve non-senescent Ctrl-LFs to CM from senescence-induced Ctrl-LFs and AECs and IPF-LFs increased the markers of senescence including nuclear localisation of phosphorylated-H2A histone family member X (H2AXγ) and expression of p21, IL-6 and IL-8 in Ctrl-LFs. Additionally, co-cultures of non-senescent and senescence-induced Ctrl-LFs induced a senescent-like phenotype in the non-senescent cells. These data suggest that the phenomenon of "senescence-induced senescence" can occur in vitro in primary cultures of human LFs, and provides a possible explanation for the abnormal abundance of senescent cells in the lungs of IPF patients.

20.
Immunology ; 131(1): 118-27, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20406299

RESUMEN

While it is known that the anti-inflammatory effects of interleukin (IL)-4 require new protein synthesis, the exact mechanisms by which IL-4 suppresses the production of pro-inflammatory cytokines by human monocytes and macrophages is unclear. IL-4 rapidly induced suppressor of cytokine signalling-1 (SOCS1) mRNA and protein, which peaked at 60 min, much earlier than lipopolysaccharide (LPS)-induced SOCS1 mRNA and protein which were consistently maximal 4 hr post-exposure. SOCS1 is a molecule generally considered to be induced for negative feedback of inflammatory processes. We investigated whether the early induction of SOCS1 by IL-4 was responsible for the suppression of LPS-induced tumour necrosis factor (TNF)-alpha production by IL-4. IL-4 suppressed LPS-induced TNF-alpha in freshly isolated monocytes at the level of transcription but acted by a different, possibly translational, mechanism in monocytes cultured overnight in macrophage colony-stimulating factor (M-CSF). Despite different modes of regulation by IL-4, the kinetics and magnitude of induction of SOCS1 mRNA and protein by IL-4 in the two cell types were identical. There was no significant difference in the suppression by IL-4 of LPS-induced TNF-alpha production by bone-marrow derived macrophages from wild-type mice, Ifngamma(-/-) mice and mice lacking SOCS1 (Socs1(-/-)Ifngamma(-/-)). These data suggest that SOCS1 is not involved in the suppression of LPS-induced TNF-alpha production by IL-4.


Asunto(s)
Antiinflamatorios , Interleucina-4 , Monocitos , Transducción de Señal , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Animales , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Células Cultivadas , Humanos , Interferón gamma/farmacología , Interleucina-4/metabolismo , Interleucina-4/farmacología , Lipopolisacáridos/inmunología , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Monocitos/efectos de los fármacos , Monocitos/inmunología , Monocitos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína 1 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/efectos de los fármacos , Proteínas Supresoras de la Señalización de Citocinas/genética , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA