RESUMEN
BACKGROUND AND PURPOSE: There is concern that subvisible aggregates in biotherapeutic drug products pose a risk to patient safety. We investigated the threshold of biotherapeutic aggregates needed to induce immunogenic responses. METHODS AND RESULTS: Highly aggregated samples were tested in cell-based assays and induced cellular responses in a manner that depended on the number of particles. The threshold of immune activation varied by disease state (cancer, rheumatoid arthritis, allergy), concomitant therapies, and particle number. Compared to healthy donors, disease state patients showed an equal or lower response at the late phase (7 days), suggesting they may not have a higher risk of responding to aggregates. Xeno-het mice were used to assess the threshold of immune activation in vivo. Although highly aggregated samples (~ 1,600,000 particles/mL) induced a weak and transient immunogenic response in mice, a 100-fold dilution of this sample (~ 16,000 particles/mL) did not induce immunogenicity. To confirm this result, subvisible particles (up to ~ 18,000 particles/mL, containing aggregates and silicone oil droplets) produced under representative administration practices (created upon infusion of a drug product through an IV catheter) did not induce a response in cell-based assays or appear to increase the rate of adverse events or immunogenicity during phase 3 clinical trials. CONCLUSION: The ability of biotherapeutic aggregates to elicit an immune response in vitro, in vivo, and in the clinic depends on high numbers of particles. This suggests that there is a high threshold for aggregates to induce an immunogenic response which is well beyond that seen in standard biotherapeutic drug products.
Asunto(s)
Formación de Anticuerpos , Humanos , Ratones , Animales , Preparaciones FarmacéuticasRESUMEN
Multiproduct manufacturing of biotherapeutic proteins generate cleaning-induced protein degradants because of extreme pH and temperature conditions during the cleaning process. Cleaning Acceptance limits are calculated based on the maximum allowable carryover (MAC) assessment of the previously manufactured active pharmaceutical ingredient (API) - or drug product - based on the permitted daily exposure (PDE) of the previously manufactured API into the dose of subsequent product. In this study, we tested a previously determined PDE value for cleaning-induced protein degradants of 650 µg/dose. A bench-scale cleaning method was used to generate cleaning induced degradants from both a half-life extension (HLE) BiTE® molecule and a mAb product. For this investigation degradants of HLE BiTE®-A and mAb-1 were characterized either alone or degradants of HLE BiTE®-A and mAb-1 spiked into mAb-1 at 650 µg. These samples were characterized by endotoxin testing, size exclusion chromatography (SEC), light obscuration by HIAC, and micro-fluidic imaging (MFI). These results suggest that significant degradation of the molecule occurs because of the cleaning procedure, and it is no longer in the intact form or active state. The biological impact was assessed using a cell line assay to assess immune activation, and a human Peripheral Blood Mononuclear Cell (PBMC) assay to assess T cell activation, T cell proliferation, and cytokine release after 20 hours and 7 days. Findings from the various in vitro cell-based assays suggest that the presence of 650 µg of carryover of degradants either alone or spiked into the same or a cross-product do not increase immunogenicity risk in cell-based assays - suggesting that the current PDE of 650 µg/dose for cleaning-induced degradant carryover does not have a risk of immunogenicity in patients.
RESUMEN
Cardiovascular diseases remain the leading cause of death globally. In recent years, vagal nerve stimulation (VNS) has shown promising results in the treatment of a number of cardiovascular diseases. In this approach, mild electrical pulses are sent to the brain via the vagus nerve. This open-loop neurostimulation, however, leads to various side effects due to physiological and inter-patient variability and therefore a closed-loop delivery strategy of electrical pulses that accounts for this variability is desired. In this context, we envision data-driven sparse dynamical model parameterized by patient-specific data as appropriate for use in closed loop controller design. In this work, we build a dynamical model for mean arterial pressure and heart rate using the method sparse identification of nonlinear dynamics (SINDy). As a proxy for real datasets or measurements from a patient, we simulate a mechanistic model from the literature and then discover a data-driven model for predicting mean arterial pressure and heart rate in response to neural stimulus. This discovered model is then used to design a controller to be implemented in closed-loop via model predictive control. We observe that this data-driven model is interpretable, consistent with experiments, provides insights on the sensitivity of different stimulation locations and simplifies the formulation of the optimal control problem. Noting the set-point tracking performance of this closed-loop model-based controller that uses this discovered model, we conclude that the model is adequate in capturing the dynamics of a highly nonlinear cardiovascular system for the purpose of optimal predictive controller design.
RESUMEN
Peptides from degradation of intracellular proteins are continuously displayed by major histocompatibility complex (MHC) class I. To better understand origins of these peptides, we performed a comprehensive census of the class I peptide repertoire in the presence and absence of ubiquitin-proteasome system (UPS) activity upon developing optimized methodology to enrich for and quantify these peptides. Whereas most class I peptides are dependent on the UPS for their generation, a surprising 30%, enriched in peptides of mitochondrial origin, appears independent of the UPS. A further ~10% of peptides were found to be dependent on the proteasome but independent of ubiquitination for their generation. Notably, clinically achievable partial inhibition of the proteasome resulted in display of atypical peptides. Our results suggest that generation of MHC class Iâ¢peptide complexes is more complex than previously recognized, with UPS-dependent and UPS-independent components; paradoxically, alternative protein degradation pathways also generate class I peptides when canonical pathways are impaired.