Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phytother Res ; 38(4): 1932-1950, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38358681

RESUMEN

Morinda citrifolia L., commonly known as Noni, has a longstanding history in traditional medicine for treating various diseases. Recently, there has been an increased focus on exploring Noni extracts and phytoconstituents, particularly for their effectiveness against cancers such as lung, esophageal, liver, and breast cancer, and their potential in cancer chemoprevention. This study aims to provide a comprehensive review of in vitro and in vivo studies assessing Noni's impact on cancer, alongside an exploration of its bioactive compounds. A systematic review was conducted, encompassing a wide range of scientific databases to gather pertinent literature. This review focused on in vitro and in vivo studies, as well as clinical trials that explore the effects of Noni fruit and its phytoconstituents-including anthraquinones, flavonoids, sugar derivatives, and neolignans-on cancer. The search was meticulously structured around specific keywords and criteria to ensure a thorough analysis. The compiled studies highlight Noni's multifaceted role in cancer therapy, showcasing its various bioactive components and their modes of action. This includes mechanisms such as apoptosis induction, cell cycle arrest, antiangiogenesis, and immune system modulation, demonstrating significant anticancer and chemopreventive potential. The findings reinforce Noni's potential as a safe and effective option in cancer prevention and treatment. This review underscores the need for further research into Noni's anticancer properties, with the hope of stimulating additional studies and clinical trials to validate and expand upon these promising findings.

2.
Ann Pharm Fr ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39089365

RESUMEN

Parkinson's disease (PD) is a widely seen neurodegenerative condition recognized by misfolded α-synuclein (αSyn) protein, a prominent indicator for PD and other synucleinopathies. Motor symptoms like stiffness, akinesia, rest tremors, and postural instability coexist with nonmotor symptoms that differ from person to person in the development of PD. These symptoms arise from a progressive loss of synapses and neurons, leading to a widespread degenerative process in multiple organs. Implementing medical and surgical interventions, such as deep brain stimulation, has enhanced individuals' overall well-being and long-term survival with PD. It should be mentioned that these treatments cannot stop the condition from getting worse. The complicated structure of the brain and the existence of a semi-permeable barrier, commonly known as the BBB, have traditionally made medication delivery for the treatment of PD a challenging endeavor. The drug's low lipophilic nature, enormous size, and peculiarity for various ATP-dependent transport mechanisms hinder its ability to enter brain cells. This article delves into the potential of drug delivery systems based on chitosan (CS) to treat PD.

3.
Arch Pharm (Weinheim) ; 356(9): e2300245, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37379239

RESUMEN

The benzoxazolone nucleus is an ideal scaffold for drug design, owing to its discrete physicochemical profile, bioisosteric preference over pharmacokinetically weaker moieties, weakly acidic behavior, presence of both lipophilic and hydrophilic fragments on a single framework, and a wider choice of chemical modification on the benzene and oxazolone rings. These properties apparently influence the interactions of benzoxazolone-based derivatives with their respective biological targets. Hence, the benzoxazolone ring is implicated in the synthesis and development of pharmaceuticals with a diverse biological profile ranging from anticancer, analgesics, insecticides, anti-inflammatory, and neuroprotective agents. This has further led to the commercialization of several benzoxazolone-based molecules and a few others under clinical trials. Nevertheless, the SAR exploration of benzoxazolone derivatives for the identification of potential "hits" followed by the screening of "leads" provides a plethora of opportunities for further exploration of the pharmacological profile of the benzoxazolone nucleus. In this review, we aim to present the biological profile of different derivatives based on the benzoxazolone framework.


Asunto(s)
Analgésicos , Benzoxazoles , Relación Estructura-Actividad , Analgésicos/farmacología , Benzoxazoles/química , Interacciones Hidrofóbicas e Hidrofílicas
4.
Drug Dev Res ; 84(7): 1337-1345, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37583273

RESUMEN

Antimicrobial resistance caused by the emergence of antibiotic-resistant microbes, termed as "superbugs," poses a grave healthcare concern in the contemporary era. Though this phenomenon is natural, an incessant use of antibiotics due to their unregulated over-the-counter availability, and a lack of compliance with the legislation seem to be major contributing factors. This phenomenon has further complicated the treatment of common infectious diseases thereby leading to prolonged illness, disability, and even death. In addition, a sizeable impact on the healthcare cost is met due to a prolonged stay at the medical facilities to receive an intensive care. Overall, the gains of "Millennium Development Goals" and the accomplishment of Sustainable Development Goals are at risk due to the emerging antimicrobial resistance. Since an early identification and development of novel antibiotic classes that evade antimicrobial resistance appears improbable, the strategy of hybridization of the existing antibiotics with efficacious pharmacophores and drug molecules with a different mechanism of antimicrobial action can be a silver lining for the management of superbugs. In this regard, we aim to provide a perspective for the applicability of the hybridization of oxazolidinone class of antibiotics with other drugs for evading antimicrobial resistance.


Asunto(s)
Antiinfecciosos , Oxazolidinonas , Oxazolidinonas/farmacología , Oxazolidinonas/uso terapéutico , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Antibacterianos/farmacología
5.
Drug Dev Res ; 84(3): 397-405, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36651662

RESUMEN

Carbamate group is mainly used for designing prodrugs to achieve first-pass and systemic stability against enzyme hydrolysis as the carbamate functionality is recognized by esterase enzymes. As compared to the ester functionality, the carbamate group shows a lesser lability towards enzyme hydrolysis, but a higher susceptibility than amides. Cyclic carbamates present a unique motif in the contemporary drug discovery and development owing to the presence of a polar, and sterically small, constrained Hydrogen-bonding acceptor atom. The metabolic stability of 5/6-membered cyclic carbamates are higher as compared to their acyclic counterparts as the former do not undergo metabolic ring opening under physiological conditions. Besides, the metabolic lability of acyclic carbamates is determined by the degree of substitution at the endocyclic/exocyclic "N" atom, which further enables the design and development of various carbamate drugs or prodrugs. As such, the metabolic stability of carbamates follows the order: Cyclic carbamates > Alkyl-OCO-NH2 ¼ Alkyl-OCO-NHAcyl ∼ Alkyl-OCO-NHAryl ≥ Aryl-OCO-N(endocyclic) ∼ Aryl-OCO-N(Alkyl)2 ≥ Alkyl-OCO-N(endocyclic) ≥ Alkyl-OCO-N(Alkyl)2 ∼ Alkyl-OCO-NHAlkyl ¼ Aryl-OCO-NHAlkyl.


Asunto(s)
Ansiolíticos , Profármacos , Carbamatos , Hidrólisis , Esterasas
6.
Cancer Cell Int ; 22(1): 386, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36482329

RESUMEN

Therapeutic effect of phytochemicals has been emphasized in the traditional medicine owing to the presence of bioactive molecules, such as polyphenols. Luteolin is a flavone belonging to the flavonoid class of polyphenolic phytochemicals with healing effect on hypertension, inflammatory disorders, and cancer due to its action as pro-oxidants and antioxidants. The anticancer profile of luteolin is of interest due to the toxic effect of contemporary chemotherapy paradigm, leading to the pressing need for the development and identification of physiologically benevolent anticancer agents and molecules. Luteolin exerts anticancer activity by downregulation of key regulatory pathways associated with oncogenesis, in addition to the induction of oxidative stress, cell cycle arrest, upregulation of apoptotic genes, and inhibition of cell proliferation and angiogenesis in cancer cells. In this review, we discuss about the anticancer profile of luteolin.

7.
Pharm Res ; 39(11): 2817-2829, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36195824

RESUMEN

PURPOSE: The aim of current study is to formulate, optimize and characterize the developed formulation of Mesalamine-Curcumin Nanostructured Lipid Carriers (Mes-Cur NLCs). METHODS: It was formulated using high pressure homogenization followed by probe sonication and formulation variables were optimized using Central Composite Design. The particle size (PS), zeta potential (ZP), entrapment efficiency (EE), drug release, cytotoxicity on NIH 3T3 fibroblasts cells and HaCaT keratinocytes cells and efficacy on RAW264.7 cells for optimized formulation was determined. RESULTS: The PS, ZP and EE were found to be 85.26 nm, -23.7 ± 7.45 mV, 99.2 ± 2.62 % (Mes) and 84 ± 1.51 % (Cur), respectively. The good correlation between predicted and obtained value indicated suitability and reproducibility of experimental design. NLCs showed spherical shape as confirmed by TEM. In vitro drug release profile of prepared formulation showed that Mes exhibited 100 % release at 48 h, whereas Cur exhibited 82.23 ± 2.97% release at 120 h. Both the drugs exhibited sustained release upon incorporation into the NLCs. The absence of any significant cell death during MTT assay performed on NIH 3T3 fibroblasts cells and HaCaT keratinocytes cells indicated that NLCs' were safe for use. Furthermore, significant reduction in nitric oxide level during anti-inflammatory evaluation of formulation on RAW264.7 cells showed excellent potential for the formulation to treat inflammation. The formulation was found stable as no significant difference between the PS, ZP and EE of the fresh and aged NLCs was observed. CONCLUSION: The outcomes of study deciphered successful formulation of Mes-Cur NLCs.


Asunto(s)
Curcumina , Nanoestructuras , Curcumina/farmacología , Portadores de Fármacos , Mesalamina , Lípidos , Reproducibilidad de los Resultados , Tamaño de la Partícula
8.
J Biochem Mol Toxicol ; 36(10): e23174, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35861662

RESUMEN

Respiratory diseases (RDs), such as chronic obstructive pulmonary disease, cystic fibrosis, asthma, and pneumonia, are associated with significant morbidity and mortality. Treatment usually consists of antibiotics and steroids. Relevant published literature reviews, studies, and clinical trials were accessed from institutional and electronic databases. The keywords used were respiratory diseases, steroids, antibiotics, and combination of steroids and antibiotics. Selected articles and literature were carefully reviewed. Antibiotics are often prescribed as the standard therapy to manage RDs. Types of causative respiratory pathogens, spectrum of antibiotics activity, route of administration, and course of therapy determine the type of antibiotics that are prescribed. Despite being associated with good clinical outcome, treatment failure and recurrence rate are still high. In addition, antibiotic resistance has been widely reported due to bacterial mutations in response to the use of antibiotics, which render them ineffective. Nevertheless, there has been a growing demand for corticosteroids (CS) and antibiotics to treat a wide variety of diseases, including various airway diseases, due to their immunosuppressive and anti-inflammatory properties. The use of CS is well established and there are different formulations based on the diseases, such as topical administration, tablets, intravenous injections, and inhaled preparations. Both antibiotics and CS possess similar properties in terms of their anti-inflammatory effects, especially regulating cytokine release. Thus, the current review examines and discusses the different applications of antibiotics, CS, and their combination in managing various RDs. Drawbacks of these interventions are also discussed.


Asunto(s)
Antibacterianos , Esteroides , Corticoesteroides/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinflamatorios , Citocinas , Esteroides/uso terapéutico
9.
Arch Pharm (Weinheim) ; 355(11): e2200142, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35892245

RESUMEN

Alzheimer's disease (AD) is a degenerative neurological disease characterized by gradual loss of cognitive skills and memory. The exact pathogenesis involved still remains unrevealed, but several studies indicate the involvement of an array of different enzymes, underlining the multifactorial character of the disease. Inhibition of these enzymes is therefore a powerful approach in the development of AD treatments, with promising candidates, including acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and monoamine oxidase. Interestingly, AChE is the target of a major pesticide family (organophosphates), with several reports indicating an intersection between the pesticide's activity and AD. In this study, various TADDOL derivatives were synthesized and their in vitro activities as AChE/BuChE inhibitors as well as their antioxidant activities were studied. Molecular modeling studies revealed the capability of TADDOL derivatives to bind to AChE and induce inhibition, especially compounds 2b and 3c furnishing IC50 values of 36.78 ± 8.97 and 59.23 ± 5.31 µM, respectively. Experimental biological activities and molecular modeling studies clearly demonstrate that TADDOL derivatives with specific stereochemistry have an interesting potential for the design of potent AChE inhibitors. The encouraging results for compounds 2b and 3c indicate them as promising scaffolds for selective and potent AChE inhibitors.


Asunto(s)
Enfermedad de Alzheimer , Plaguicidas , Humanos , Butirilcolinesterasa/metabolismo , Acetilcolinesterasa/metabolismo , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Plaguicidas/farmacología
10.
Drug Dev Res ; 83(2): 296-300, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35297083

RESUMEN

Cellular oncogenesis involves a complex interplay between the several synchronized, interdependent pathways that collectively determine the pathogenesis and pathophysiology of cancer. Limited therapeutic success with the existing anticancer drugs drew huge interest in the design and development of new pharmacophores with improved clinical efficacy, however despite huge investments in anticancer RD; the average number of Food and Drug Administration-approved anticancer drugs declined since the 1990s. The contemporary anticancer medications possess high attrition rates, bear substantial costs, and experience low efficacy owing to the drug resistance expressed by the aggressive tumors. Mainly, the translation of novel candidate anticancer drugs into clinical practice, their commercialization, and transformation from the bench to bedside require a long timeframe of 10-15 years and capital worth millions of dollars. The repurposing strategy substantially accelerated the anticancer drug development regime as the approved drugs with tested safety and efficacy ensure a minimal risk of failure, and nominal R&D expenses as anticipated for the newly identified candidate drugs yet to enter the clinical trials. In addition, the repurposed drugs ensure a rapid clinical translation due to a validated clinical profile and their ability to target the identified hallmarks and hitherto unknown vulnerabilities of cancer. The flagship project "Repurposing Drugs in Oncology" (ReDO) identified 268 "hard repurposing" noncancer medications as candidate drugs with a promising anticancer profile (https://www.anticancerfund.org/en/redo-db). However, the generic profile of 84% of repurposed drugs in ReDO data set discourages the commercial sponsors from funding the repurposing trials, especially the Phase III efficacy trials that require significant capital.


Asunto(s)
Antihelmínticos , Antineoplásicos , Neoplasias , Antihelmínticos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Bencimidazoles , Carbamatos/uso terapéutico , Desarrollo de Medicamentos , Reposicionamiento de Medicamentos , Humanos , Neoplasias/tratamiento farmacológico
11.
Drug Dev Res ; 83(1): 3-15, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34506652

RESUMEN

The pyrophosphate mimicking groups offer rational modification of the pyrophosphate-bearing natural substrates of the overexpressed enzymes that cause the onset of disease progression. Mainly, the modified substrate interacts differently with the enzyme active site eventually causing its deactivation, or provides the therapeutically active products at the completion of the catalytic cycle that contribute toward the inhibition of the target enzyme. Many of the pyrophosphate mimic-containing molecules serve as competitive or allosteric inhibitors of the target enzyme to achieve the desirable properties for the mitigation of the target enzyme's pathophysiology. This review presents an epigrammatic overview of the pyrophosphate mimics in medicinal chemistry.


Asunto(s)
Química Farmacéutica , Difosfatos , Dominio Catalítico
12.
Molecules ; 27(9)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35566388

RESUMEN

The inflammatory response is a central aspect of the human immune system that acts as a defense mechanism to protect the body against infections and injuries. A dysregulated inflammatory response is a major health concern, as it can disrupt homeostasis and lead to a plethora of chronic inflammatory conditions. These chronic inflammatory diseases are one of the major causes of morbidity and mortality worldwide and the need for them to be managed in the long term has become a crucial task to alleviate symptoms and improve patients' overall quality of life. Although various synthetic anti-inflammatory agents have been developed to date, these medications are associated with several adverse effects that have led to poor therapeutic outcomes. The hunt for novel alternatives to modulate underlying chronic inflammatory processes has unveiled nature to be a plentiful source. One such example is agarwood, which is a valuable resinous wood from the trees of Aquilaria spp. Agarwood has been widely utilized for medicinal purposes since ancient times due to its ability to relieve pain, asthmatic symptoms, and arrest vomiting. In terms of inflammation, the major constituent of agarwood, agarwood oil, has been shown to possess multiple bioactive compounds that can regulate molecular mechanisms of chronic inflammation, thereby producing a multitude of pharmacological functions for treating various inflammatory disorders. As such, agarwood oil presents great potential to be developed as a novel anti-inflammatory therapeutic to overcome the drawbacks of existing therapies and improve treatment outcomes. In this review, we have summarized the current literature on agarwood and its bioactive components and have highlighted the potential roles of agarwood oil in treating various chronic inflammatory diseases.


Asunto(s)
Calidad de Vida , Thymelaeaceae , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Madera
13.
J Drug Deliv Sci Technol ; 74: 103541, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35774068

RESUMEN

Chronic lung diseases such as asthma, chronic obstructive pulmonary disease, lung cancer, and the recently emerged COVID-19, are a huge threat to human health, and among the leading causes of global morbidity and mortality every year. Despite availability of various conventional therapeutics, many patients remain poorly controlled and have a poor quality of life. Furthermore, the treatment and diagnosis of these diseases are becoming increasingly challenging. In the recent years, the application of nanomedicine has become increasingly popular as a novel strategy for diagnosis, treatment, prevention, as well as follow-up of chronic lung diseases. This is attributed to the ability of nanoscale drug carriers to achieve targeted delivery of therapeutic moieties with specificity to diseased site within the lung, thereby enhancing therapeutic outcomes of conventional therapies whilst minimizing the risks of adverse reactions. For this instance, monoolein is a polar lipid nanomaterial best known for its versatility, thermodynamic stability, biocompatibility, and biodegradability. As such, it is commonly employed in liquid crystalline systems for various drug delivery applications. In this review, we present the applications of monoolein as a novel nanomaterial-based strategy for targeted drug delivery with the potential to revolutionize therapeutic approaches in chronic lung diseases.

14.
Future Oncol ; 17(29): 3873-3880, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34263659

RESUMEN

The mortality and morbidity rates for prostate cancer have recently increased to alarming levels, rising higher than lung cancer. Due to a lack of drug targets and molecular probes, existing theranostic techniques are limited. Human LIN28A and its paralog LIN28B overexpression are associated with a number of tumors resulting in a remarkable increase in cancer aggression and poor prognoses. The current review aims to highlight recent work identifying the key roles of LIN28A and LIN28B in prostate cancer, and to instigate further preclinical and clinical research in this important area.


Asunto(s)
Terapia Molecular Dirigida , Medicina de Precisión , Neoplasias de la Próstata/terapia , Proteínas de Unión al ARN/metabolismo , Humanos , Masculino , Neoplasias de la Próstata/patología
15.
Drug Dev Res ; 82(7): 945-958, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34117784

RESUMEN

Anthranilic acid and its analogues present a privileged profile as pharmacophores for the rational development of pharmaceuticals deliberated for managing the pathophysiology and pathogenesis of various diseases. The substitution on anthranilic acid scaffold provides large compound libraries, which enable a comprehensive assessment of the structure activity relationship (SAR) analysis for the identification of hits and leads in a typical drug development paradigm. Besides, their widespread applications as anti-inflammatory fenamates, the amide and anilide derivatives of anthranilic acid analogues play a central role in the management of several metabolic disorders. In addition, these derivatives of anthranilic acid exhibit interesting antimicrobial, antiviral and insecticidal properties, whereas the derivatives based on anthranilic diamide scaffold present applications as P-glycoprotein inhibitors for managing the drug resistance in cancer cells. In addition, the anthranilic acid derivatives serve as the inducers of apoptosis, inhibitors of hedgehog signaling pathway, inhibitors of mitogen activated protein kinase pathway, and the inhibitors of aldo-keto reductase enzymes. The antiviral derivatives of anthranilic acid focus on the inhibition of hepatitis C virus NS5B polymerase to manifest considerable antiviral properties. The anthranilic acid derivatives reportedly present neuroprotective applications by downregulating the key pathways responsible for the manifestation of neuropathological features and neurodegeneration. Nevertheless, the transition metal complexes of anthranilic acid derivatives offer therapeutic applications in diabetes mellitus, and obesity by regulating the activity of α-glucosidase. The present review demonstrates a critical analysis of the therapeutic profile of the key derivatives of anthranilic acid and its analogues for the rational development of pharmaceuticals and therapeutic molecules.


Asunto(s)
Química Farmacéutica , ortoaminobenzoatos , Relación Estructura-Actividad , ortoaminobenzoatos/química , ortoaminobenzoatos/farmacología
16.
Drug Dev Res ; 82(2): 167-197, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33137216

RESUMEN

An over-expression of COX-2 isoenzyme belonging to the Cyclooxygenase Enzyme Family triggers the overproduction of pro-inflammatory prostaglandins that instigate the development of chronic inflammation and related disorders. Hence, the rationally designed drugs for mitigating over-activity of COX-2 isoenzyme play a regulatory role toward the alleviation of the progression of these disorders. However, a selective COX-2 inhibition chemotherapy prompts several side effects that necessitate the identification of novel molecular scaffolds for deliberating state-of-the-art drug designing strategies. The heterocyclic "azole" scaffold, being polar and hydrophilic, possesses remarkable physicochemical advantages for designing physiologically active molecules capable of interacting with a wide range of biological components, including enzymes, peptides, and metabolites. The substituted derivatives of azole nuclei enable a comprehensive SAR analysis for the appraisal of bioactive profile of the deliberated molecules for obtaining the rationally designed compounds with prominent activities. The comprehensive SAR analysis readily prompted the identification of Y-shaped molecules and the eminence of bulkier group for COX-2 selective inhibition. This review presents an epigrammatic collation of the pharmacophore-profile of the chemotherapeutics based on azole motif for a selective targeting of the COX-2 isoenzyme.


Asunto(s)
Azoles/administración & dosificación , Inhibidores de la Ciclooxigenasa 2/administración & dosificación , Ciclooxigenasa 2/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Compuestos Heterocíclicos/administración & dosificación , Animales , Azoles/química , Inhibidores de la Ciclooxigenasa 2/química , Compuestos Heterocíclicos/química , Humanos
17.
Drug Dev Res ; 82(6): 727-729, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33586190

RESUMEN

The helical structure of V-amylose offering a superior encapsulation affinity compared with the other polysaccharides, especially toward the amphiphilic or hydrophobic molecules; in addition to providing a higher resistance toward enzymatic hydrolysis support its applications as a potential drug delivery vehicle. Mainly, the glycosidic linkages and -CH2 - groups forming the hydrophobic cavity of V-amylose helix, and the glycosyl hydroxyl groups constituting its hydrophilic periphery promote the loading of a diverse range of molecules via van der Waals forces and hydrogen bonding interactions. These properties enable a high-loading efficiency, targeted delivery, and controlled release of the cargo drug molecules by V-amylose. Besides, V-amylose presents characteristics of an ideal drug delivery system, such as biocompatibility, physiological benevolence, nonimmunogenicity, and biodegradability. The V-amylose polysaccharide chains fold into left-handed single helix comprising of six glucose units in each turn having a pitch height of 7.91-8.17 Å. These structural features of V-amylose differentiate it from the parent amylose polysaccharide and enable the accommodation and nanoencapsulation of a wide range of therapeutics in the former. The tightly packed helical structure of V-amylose provides extraordinary resistance toward digestion by amylase compared with the linear polysaccharides, which supports the application of V-amylose as controlled drug release systems. The activity of the amylase enzyme produced by salivary glands, pancreas, gastrointestinal tract, and gut microbiota on amylose-based drug delivery vehicles promote enzyme-sensitive controlled oral and colon-specific release of the encapsulated drug. The single helical V-amylose with hydrophobic core and hydrophilic periphery forms inclusion complexes that improve the absorption and permeation of drugs having a high clogP index. The present commentary highlights the distinguished features of V-amylose as an imminent drug delivery system.


Asunto(s)
Amilosa , Amilosa/química , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Preparaciones Farmacéuticas
18.
Drug Dev Res ; 82(4): 469-473, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33496060

RESUMEN

Despite vigorous efforts, the COVID-19 pandemic continues to take a toll on the global health. The contemporary therapeutic regime focused on the viral spike proteins, viral 3CL protease enzyme, immunomodulation, inhibition of viral replication, and providing a symptomatic relief encouraged the repurposing of drugs to meet the urgency of treatment. Similarly, the representative drugs that proved beneficial to alleviate SARS-CoV-1, MERS-CoV, HIV, ZIKV, H1N1, and malarial infection in the past presented a sturdy candidature for ameliorating the COVID-19 therapeutic doctrine. However, most of the deliberations for developing effective pharmaceuticals proved inconsequential, thereby encouraging the identification of new pathways, and novel pharmaceuticals for capping the COVID-19 infection. The COVID-19 contagion encompasses a burst release of the cytokines that increase the severity of the infection mainly due to heightened immunopathogenicity. The pro-inflammatory metabolites, COX-2, cPLA2, and 5-LOX enzymes involved in their generation, and the substrates that instigate the origination of the innate inflammatory response therefore play an important role in intensifying and worsening of the tissue morbidity related to the coronavirus infection. The deployment of representative drugs for inhibiting these overexpressed immunogenic pathways in the tissues invaded by coronaviruses has been a matter of debate since the inception of the pandemic. The effectiveness of NSAIDs such as Aspirin, Indomethacin, Diclofenac, and Celecoxib in COVID-19 coagulopathy, discouraging the SARS viral replication, the inflammasome deactivation, and synergistic inhibition of H5N1 viral infection with representative antiviral drugs respectively, have provided a silver lining in adjuvant COVID-19 therapy. Since the anti-inflammatory NSAIDs and COXIBs mainly function by reversing the COX-2 overexpression to modulate the overproduction of pro-inflammatory cytokines and chemokines, these drugs present a robust treatment option for COVID-19 infection. This commentary succinctly highlights the various claims that support the status of immunomodulatory NSAIDs, and COXIBs in the adjuvant COVID-19 therapy.


Asunto(s)
COVID-19/enzimología , Factores Inmunológicos/uso terapéutico , Prostaglandina-Endoperóxido Sintasas/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Quimioterapia Adyuvante/métodos , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Humanos , Factores Inmunológicos/farmacología , Prostaglandina-Endoperóxido Sintasas/efectos de los fármacos , Prostaglandina-Endoperóxido Sintasas/fisiología , Tratamiento Farmacológico de COVID-19
19.
Drug Dev Res ; 82(2): 145-148, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33137245

RESUMEN

The anticancer and antimicrobial drugs customarily suffer a functional inefficacy due to a limited delivery to the target site, active cellular efflux, in addition to the inadequacy of carrier system. Metal nanoparticles possess unique physicochemical properties as drug delivery vehicles, for delivering the drugs susceptible to cellular efflux pumps. However, a direct physiological exposure of nanoparticle surface after releasing the carrier drug poses serious concerns. The polysaccharides with enhanced biotolerance used for encapsulating the cargo drug molecules, when loaded on the nanoparticle surface presents a perspective drug delivery system combining the physiological benevolence of the former and theranostic/efflux pump evading features of the latter. The present commentary highlight the importance of metal nanoparticle-loaded polysaccharides as perspective drug delivery system.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Nanopartículas del Metal/administración & dosificación , Polisacáridos/administración & dosificación , Animales , Antiinfecciosos/administración & dosificación , Antiinfecciosos/síntesis química , Antiinfecciosos/metabolismo , Antineoplásicos/administración & dosificación , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/síntesis química , Portadores de Fármacos/metabolismo , Sistemas de Liberación de Medicamentos/tendencias , Humanos , Nanopartículas del Metal/química , Polisacáridos/síntesis química , Polisacáridos/metabolismo
20.
Drug Dev Res ; 82(3): 364-373, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33210368

RESUMEN

Development and progression of metastasis comprises synchronized erroneous expressions of several composite pathways, which are difficult to manage simultaneously with the representative anticancer molecules. The emergence of the drug resistance and the complex interplay between these pathways further potentiates cancer related complexities. Barbiturates and their derivatives present a commendable anticancer profile by attenuating the cancer manifesting metabolic and enzymatic pathways including, but not limited to matrix metalloproteinases, xanthine oxidase, amino peptidases, histone deacetylases, and Ras/mitogen-activated protein kinase. The derivatization and conjugation of barbiturates with pharmacophores delivers a suitable hybrid profile in containing the anomalous expression of these pathways. The present report presents a succinct collation of the barbiturates and their derivatives in managing the various cancer causing pathways.


Asunto(s)
Antineoplásicos/farmacología , Barbitúricos/farmacología , Neoplasias/tratamiento farmacológico , Aminopeptidasas/metabolismo , Apoptosis/efectos de los fármacos , Histona Desacetilasas/metabolismo , Humanos , Metaloproteinasas de la Matriz/metabolismo , Neoplasias/enzimología , Xantina Oxidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA