Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Environ Sci Technol ; 55(24): 16538-16551, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34882392

RESUMEN

Prymnesium parvum is a toxin-producing microalga, which causes harmful algal blooms globally, frequently leading to massive fish kills that have adverse ecological and economic implications for natural waterways and aquaculture alike. The dramatic effects observed on fish are thought to be due to algal polyether toxins, known as the prymnesins, but their lack of environmental detection has resulted in an uncertainty about the true ichthyotoxic agents. Using qPCR, we found elevated levels of P. parvum and its lytic virus, PpDNAV-BW1, in a fish-killing bloom on the Norfolk Broads, United Kingdom, in March 2015. We also detected, for the first time, the B-type prymnesin toxins in Broads waterway samples and gill tissue isolated from a dead fish taken from the study site. Furthermore, Norfolk Broads P. parvum isolates unambiguously produced B-type toxins in laboratory-grown cultures. A 2 year longitudinal study of the Broads study site showed P. parvum blooms to be correlated with increased temperature and that PpDNAV plays a significant role in P. parvum bloom demise. Finally, we used a field trial to show that treatment with low doses of hydrogen peroxide represents an effective strategy to mitigate blooms of P. parvum in enclosed water bodies.


Asunto(s)
Haptophyta , Animales , Peces , Floraciones de Algas Nocivas , Estudios Longitudinales , Reino Unido
2.
Proc Natl Acad Sci U S A ; 115(51): 13081-13086, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30498029

RESUMEN

The climate-active gas isoprene (2-methyl-1,3-butadiene) is released to the atmosphere in huge quantities, almost equaling that of methane, yet we know little about the biological cycling of isoprene in the environment. Although bacteria capable of growth on isoprene as the sole source of carbon and energy have previously been isolated from soils and sediments, no microbiological studies have targeted the major source of isoprene and examined the phyllosphere of isoprene-emitting trees for the presence of degraders of this abundant carbon source. Here, we identified isoprene-degrading bacteria in poplar tree-derived microcosms by DNA stable isotope probing. The genomes of isoprene-degrading taxa were reconstructed, putative isoprene metabolic genes were identified, and isoprene-related gene transcription was analyzed by shotgun metagenomics and metatranscriptomics. Gram-positive bacteria of the genus Rhodococcus proved to be the dominant isoprene degraders, as previously found in soil. However, a wider diversity of isoprene utilizers was also revealed, notably Variovorax, a genus not previously associated with this trait. This finding was confirmed by expression of the isoprene monooxygenase from Variovorax in a heterologous host. A Variovorax strain that could grow on isoprene as the sole carbon and energy source was isolated. Analysis of its genome confirmed that it contained isoprene metabolic genes with an identical layout and high similarity to those identified by DNA-stable isotope probing and metagenomics. This study provides evidence of a wide diversity of isoprene-degrading bacteria in the isoprene-emitting tree phyllosphere and greatly enhances our understanding of the biodegradation of this important metabolite and climate-active gas.


Asunto(s)
Butadienos/metabolismo , Comamonadaceae/metabolismo , Genoma Bacteriano , Hemiterpenos/metabolismo , Metagenómica , Oxigenasas de Función Mixta/metabolismo , Populus/metabolismo , Rhodococcus/metabolismo , Biodegradación Ambiental , Comamonadaceae/clasificación , Comamonadaceae/genética , ADN Bacteriano/genética , Oxigenasas de Función Mixta/genética , Filogenia , Populus/microbiología , Rhodococcus/clasificación , Rhodococcus/genética , Microbiología del Suelo
3.
Environ Microbiol ; 20(3): 1016-1029, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29314604

RESUMEN

Understanding of global methane sources and sinks is a prerequisite for the design of strategies to counteract global warming. Microbial methane oxidation in soils represents the largest biological sink for atmospheric methane. However, still very little is known about the identity, metabolic properties and distribution of the microbial group proposed to be responsible for most of this uptake, the uncultivated upland soil cluster α (USCα). Here, we reconstructed a draft genome of USCα from a combination of targeted cell sorting and metagenomes from forest soil, providing the first insights into its metabolic potential and environmental adaptation strategies. The 16S rRNA gene sequence recovered was distinctive and suggests this crucial group as a new genus within the Beijerinckiaceae, close to Methylocapsa. Application of a fluorescently labelled suicide substrate for the particulate methane monooxygenase enzyme (pMMO) coupled to 16S rRNA fluorescence in situ hybridisation (FISH) allowed for the first time a direct link of the high-affinity activity of methane oxidation to USCα cells in situ. Analysis of the global biogeography of this group further revealed its presence in previously unrecognized habitats, such as subterranean and volcanic biofilm environments, indicating a potential role of these environments in the biological sink for atmospheric methane.


Asunto(s)
Bacterias/metabolismo , Metano/metabolismo , Microbiología del Suelo , Bacterias/clasificación , Bacterias/genética , Oxidación-Reducción , Oxigenasas , Filogeografía , ARN Ribosómico 16S/genética , Suelo/química
4.
Biochem Soc Trans ; 46(2): 413-421, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29540506

RESUMEN

Prymnesium parvum is a toxin-producing microalga that causes harmful algal blooms globally, which often result in large-scale fish kills that have severe ecological and economic implications. Although many toxins have previously been isolated from P. parvum, ambiguity still surrounds the responsible ichthyotoxins in P. parvum blooms and the biotic and abiotic factors that promote bloom toxicity. A major fish kill attributed to P. parvum occurred in Spring 2015 on the Norfolk Broads, a low-lying set of channels and lakes (Broads) found on the East of England. Here, we discuss how water samples taken during this bloom have led to diverse scientific advances ranging from toxin analysis to discovery of a new lytic virus of P. parvum, P. parvum DNA virus (PpDNAV-BW1). Taking recent literature into account, we propose key roles for sialic acids in this type of viral infection. Finally, we discuss recent practical detection and management strategies for controlling these devastating blooms.


Asunto(s)
Haptophyta/crecimiento & desarrollo , Floraciones de Algas Nocivas , Azúcares , Animales , ADN/genética , Inglaterra , Peces , Haptophyta/genética , Haptophyta/metabolismo , Haptophyta/virología , Toxinas Biológicas/metabolismo
5.
Environ Microbiol ; 19(6): 2246-2257, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28244196

RESUMEN

Nitrogen is a key limiting resource for biomass production in the marine environment. Methylated amines, released from the degradation of osmolytes, could provide a nitrogen source for marine microbes. Thus far, studies in aquatic habitats on the utilization of methylamine, the simplest methylated amine, have mainly focussed on the fate of the carbon from this compound. Various groups of methylotrophs, microorganisms that can grow on one-carbon compounds, use methylamine as a carbon source. Non-methylotrophic microorganisms may also utilize methylamine as a nitrogen source, but little is known about their diversity, especially in the marine environment. In this proof-of-concept study, stable isotope probing (SIP) was used to identify microorganisms from a coastal environment that assimilate nitrogen from methylamine. SIP experiments using 15 N methylamine combined with metagenomics and metaproteomics facilitated identification of active methylamine-utilizing Alpha- and Gammaproteobacteria. The draft genomes of two methylamine utilizers were obtained and their metabolism with respect to methylamine was examined. Both bacteria identified in these SIP experiments used the γ-glutamyl-methylamide pathway, found in both methylotrophs and non-methylotrophs, to metabolize methylamine. The utilization of 15 N methylamine also led to the release of 15 N ammonium that was used as nitrogen source by other microorganisms not directly using methylamine.


Asunto(s)
Alphaproteobacteria/metabolismo , Gammaproteobacteria/metabolismo , Metilaminas/metabolismo , Nitrógeno/metabolismo , Carbono/metabolismo , Isótopos de Carbono/metabolismo , Ecosistema , Metagenómica
6.
Environ Microbiol ; 17(7): 2254-60, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25367104

RESUMEN

The methane emitted from rice fields originates to a large part (up to 60%) from plant photosynthesis and is formed on the rice roots by methanogenic archaea. To investigate to which extent root colonization controls methane (CH4 ) emission, we pulse-labeled rice microcosms with (13) CO2 to determine the rates of (13) CH4 emission exclusively derived from photosynthates. We also measured emission of total CH4 ((12+13) CH4 ), which was largely produced in the soil. The total abundances of archaea and methanogens on the roots and in the soil were analysed by quantitative polymerase chain reaction of the archaeal 16S rRNA gene and the mcrA gene coding for a subunit of the methyl coenzyme M reductase respectively. The composition of archaeal and methanogenic communities was determined with terminal restriction fragment length polymorphism (T-RFLP). During the vegetative growth stages, emission rates of (13) CH4 linearly increased with the abundance of methanogenic archaea on the roots and then decreased during the last plant growth stage. Rates of (13) CH4 emission and the abundance of methanogenic archaea were lower when the rice was grown in quartz-vermiculite with only 10% rice soil. Rates of total CH4 emission were not systematically related to the abundance of methanogenic archaea in soil plus roots. The composition of the archaeal communities was similar under all conditions; however, the analysis of mcrA genes indicated that the methanogens differed between the soil and root. Our results support the hypothesis that rates of photosynthesis-driven CH4 emission are limited by the abundance of methanogens on the roots.


Asunto(s)
Euryarchaeota/metabolismo , Metano/biosíntesis , Oryza/metabolismo , Oryza/microbiología , Raíces de Plantas/microbiología , Euryarchaeota/clasificación , Euryarchaeota/genética , Oxidorreductasas/genética , Fotosíntesis/fisiología , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S/genética , Suelo , Microbiología del Suelo
7.
Proc Natl Acad Sci U S A ; 108(10): 4170-5, 2011 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-21368116

RESUMEN

Ammonia oxidation is an essential part of the global nitrogen cycling and was long thought to be driven only by bacteria. Recent findings expanded this pathway also to the archaea. However, most questions concerning the metabolism of ammonia-oxidizing archaea, such as ammonia oxidation and potential CO(2) fixation, remain open, especially for terrestrial environments. Here, we investigated the activity of ammonia-oxidizing archaea and bacteria in an agricultural soil by comparison of RNA- and DNA-stable isotope probing (SIP). RNA-SIP demonstrated a highly dynamic and diverse community involved in CO(2) fixation and carbon assimilation coupled to ammonia oxidation. DNA-SIP showed growth of the ammonia-oxidizing bacteria but not of archaea. Furthermore, the analysis of labeled RNA found transcripts of the archaeal acetyl-CoA/propionyl-CoA carboxylase (accA/pccB) to be expressed and labeled. These findings strongly suggest that ammonia-oxidizing archaeal groups in soil autotrophically fix CO(2) using the 3-hydroxypropionate-4-hydroxybutyrate cycle, one of the two pathways recently identified for CO(2) fixation in Crenarchaeota. Catalyzed reporter deposition (CARD)-FISH targeting the gene encoding subunit A of ammonia monooxygenase (amoA) mRNA and 16S rRNA of archaea also revealed ammonia-oxidizing archaea to be numerically relevant among the archaea in this soil. Our results demonstrate a diverse and dynamic contribution of ammonia-oxidizing archaea in soil to nitrification and CO(2) assimilation and that their importance to the overall archaeal community might be larger than previously thought.


Asunto(s)
Agricultura , Amoníaco/metabolismo , Archaea/metabolismo , Bacterias/metabolismo , Dióxido de Carbono/metabolismo , Suelo , Archaea/genética , Bacterias/genética , Hibridación Fluorescente in Situ , Datos de Secuencia Molecular , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética
8.
Sci Total Environ ; 814: 152742, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-34974014

RESUMEN

Methanotrophs are the main consumers of methane produced in lake sediments. In shallow lakes suffering from eutrophication, methanogenesis is accelerated by the excess organic carbon input, and thus methanotrophs play a key role in regulating this methane flux as well as carbon cycling. Here, we applied nucleic acid stable isotope probing (SIP) to investigate the active methanotrophic microbial community in sediments of several shallow lakes affected by eutrophication. Our results showed that an active methanotrophic community dominated by gamma-proteobacterial methanotrophs, as well as abundant beta-proteobacterial methanol-utilizers, was involved in methane-derived carbon assimilation. Crenothrix, a filamentous methanotroph, was found to be a key methane consumer in all studied lakes. The ecological role of Crenothrix in lacustrine ecosystems is so far poorly understood, with only limited information on its existence in the water column of stratified lakes. Our results provide a novel ecological insight into this group by revealing a wide distribution of Crenothrix in lake sediments. The active methane assimilation by Crenothrix also suggested that it might represent a so far overlooked but crucial biological sink of methane in shallow lakes.


Asunto(s)
Lagos , Microbiota , ADN , Sedimentos Geológicos , Isótopos , Metano , Oxidación-Reducción , Filogenia
9.
Environ Microbiol ; 13(10): 2692-701, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21883789

RESUMEN

Forest soils are a major biological sink for atmospheric methane, yet the identity and physiology of the microorganisms responsible for this process remain unclear. Although members of the upland soil cluster α (USCα) are assumed to represent methanotrophic bacteria adapted to the oxidation of the trace level of methane in the atmosphere and to be an important sink of this greenhouse gas, so far they have resisted isolation. In particular, the question of whether the atmospheric methane oxidizers are able to obtain all their energy and carbon solely from atmospheric methane still waits to be answered. In this study, we performed stable-isotope probing (SIP) of RNA and DNA to investigate the assimilation of (13) C-methane and (13) C-acetate by USCα in an acidic forest soil. RNA-SIP showed that pmoA mRNA of USCα was not labelled by (13) C of supplemented (13) C methane, although catalysed reporter deposition - fluorescence in situ hybridization (CARD-FISH) targeting pmoA mRNA of USCα detected its expression in the incubated soil. In contrast, incorporation of (13) C-acetate into USCαpmoA mRNA was observed. USCαpmoA genes were not labelled, indicating that they had not grown during the incubation. Our results indicate that the contribution of alternative carbon sources, such as acetate, to the metabolism of the putative atmospheric methane oxidizers in upland forest soils might be substantial.


Asunto(s)
Acetatos/metabolismo , Bacterias/metabolismo , Metano/metabolismo , Microbiología del Suelo , Árboles/microbiología , Atmósfera , Bacterias/clasificación , Bacterias/genética , Isótopos de Carbono/análisis , Genes Bacterianos , Oxidación-Reducción , ARN Bacteriano/genética , Suelo/química
10.
Appl Environ Microbiol ; 77(17): 6027-35, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21742924

RESUMEN

Streptomyces soil isolates exhibiting the unique ability to oxidize atmospheric H(2) possess genes specifying a putative high-affinity [NiFe]-hydrogenase. This study was undertaken to explore the taxonomic diversity and the ecological importance of this novel functional group. We propose to designate the genes encoding the small and large subunits of the putative high-affinity hydrogenase hhyS and hhyL, respectively. Genome data mining revealed that the hhyL gene is unevenly distributed in the phyla Actinobacteria, Proteobacteria, Chloroflexi, and Acidobacteria. The hhyL gene sequences comprised a phylogenetically distinct group, namely, the group 5 [NiFe]-hydrogenase genes. The presumptive high-affinity H(2)-oxidizing bacteria constituting group 5 were shown to possess a hydrogenase gene cluster, including the genes encoding auxiliary and structural components of the enzyme and four additional open reading frames (ORFs) of unknown function. A soil survey confirmed that both high-affinity H(2) oxidation activity and the hhyL gene are ubiquitous. A quantitative PCR assay revealed that soil contained 10(6) to 10(8) hhyL gene copies g (dry weight)(-1). Assuming one hhyL gene copy per genome, the abundance of presumptive high-affinity H(2)-oxidizing bacteria was higher than the maximal population size for which maintenance energy requirements would be fully supplied through the H(2) oxidation activity measured in soil. Our data indicate that the abundance of the hhyL gene should not be taken as a reliable proxy for the uptake of atmospheric H(2) by soil, because high-affinity H(2) oxidation is a facultatively mixotrophic metabolism, and microorganisms harboring a nonfunctional group 5 [NiFe]-hydrogenase may occur.


Asunto(s)
Bacterias/clasificación , Bacterias/enzimología , Biodiversidad , Variación Genética , Hidrógeno/metabolismo , Hidrogenasas/genética , Microbiología del Suelo , Bacterias/genética , Bacterias/metabolismo , Biología Computacional , Metagenoma , Oxidación-Reducción
11.
Methods Mol Biol ; 2246: 291-299, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33576997

RESUMEN

Fluorescent in situ hybridization (FISH) on environmental samples has become a standard technique to identify and enumerate microbial populations. However, visualization and quantification of cells in environmental samples with complex matrices is often challenging to impossible, and downstream protocols might also require the absence of organic and inorganic particles for analysis. Therefore, quite often microbial cells have to be detached and extracted from the sample matrix prior to use in FISH. Here, details are given for a routine protocol to extract intact microbial cells from environmental samples using density gradient centrifugation. This protocol is suitable and adaptable for a wide range of environmental samples.


Asunto(s)
Hibridación Fluorescente in Situ/métodos , Microbiología Ambiental , Microbiota/genética
12.
Microbiol Resour Announc ; 10(7)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602737

RESUMEN

Characterizing the microbiome of spacecraft assembly cleanrooms is important for planetary protection. We report two bacterial metagenome-assembled genomes (MAGs) reconstructed from metagenomes produced from cleanroom samples from the Kennedy Space Center's Payload Hazardous Servicing Facility (KSC-PHSF) during the handling of the Phoenix spacecraft. Characterization of these MAGs will enable identification of the strategies underpinning their survival.

13.
Sci Total Environ ; 759: 143467, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33199011

RESUMEN

Peatlands are wetland ecosystems with great significance as natural habitats and as major global carbon stores. They have been subject to widespread exploitation and degradation with resulting losses in characteristic biota and ecosystem functions such as climate regulation. More recently, large-scale programmes have been established to restore peatland ecosystems and the various services they provide to society. Despite significant progress in peatland science and restoration practice, we lack a process-based understanding of how soil microbiota influence peatland functioning and mediate the resilience and recovery of ecosystem services, to perturbations associated with land use and climate change. We argue that there is a need to: in the short-term, characterise peatland microbial communities across a range of spatial and temporal scales and develop an improved understanding of the links between peatland habitat, ecological functions and microbial processes; in the medium term, define what a successfully restored 'target' peatland microbiome looks like for key carbon cycle related ecosystem services and develop microbial-based monitoring tools for assessing restoration needs; and in the longer term, to use this knowledge to influence restoration practices and assess progress on the trajectory towards 'intact' peatland status. Rapid advances in genetic characterisation of the structure and functions of microbial communities offer the potential for transformative progress in these areas, but the scale and speed of methodological and conceptual advances in studying ecosystem functions is a challenge for peatland scientists. Advances in this area require multidisciplinary collaborations between peatland scientists, data scientists and microbiologists and ultimately, collaboration with the modelling community. Developing a process-based understanding of the resilience and recovery of peatlands to perturbations, such as climate extremes, fires, and drainage, will be key to meeting climate targets and delivering ecosystem services cost effectively.


Asunto(s)
Ecosistema , Incendios , Carbono , Ciclo del Carbono , Suelo , Humedales
14.
Environ Microbiol ; 12(3): 821-9, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20050876

RESUMEN

Uptake of molecular hydrogen (H2) by soil is a biological reaction responsible for approximately 80% of the global loss of atmospheric H2. Indirect evidence obtained over the last decades suggests that free soil hydrogenases with an unusually high affinity for H2 are carrying out the reaction. This assumption has recently been challenged by the isolation of Streptomyces sp. PCB7, displaying the high-affinity H2 uptake activity previously attributed to free soil enzymes. While this finding suggests that actinobacteria could be responsible for atmospheric H2 soil uptake, the ecological importance of H2-oxidizing streptomycetes remains to be investigated. Here, we show that high-affinity H2 uptake activity is widespread among the streptomycetes. Among 14 streptomycetes strains isolated from temperate forest and agricultural soils, six exhibited a high-affinity H2 uptake activity. The gene encoding the large subunit of a putative high-affinity [NiFe]-hydrogenase (hydB-like gene sequence) was detected exclusively in the isolates exhibiting high-affinity H2 uptake. Catalysed reporter deposition-fluorescence in situ hybridization (CARD-FISH) experiments targeting hydB-like gene transcripts and H2 uptake assays performed with strain PCB7 suggested that streptomycetes spores catalysed the H2 uptake activity. Expression of the activity in term of biomass revealed that 10(6)-10(7) H2-oxidizing bacteria per gram of soil should be sufficient to explain in situ H2 uptake by soil. We propose that specialized H2-oxidizing actinobacteria are responsible for the most important sink term in the atmospheric H2 budget.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hidrógeno/metabolismo , Hidrogenasas/metabolismo , Microbiología del Suelo , Streptomyces/enzimología , Proteínas Bacterianas/genética , Hidrogenasas/genética , Filogenia , ARN Ribosómico 16S/genética , Streptomyces/clasificación , Streptomyces/citología , Streptomyces/genética
15.
Microbiome ; 8(1): 31, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32156318

RESUMEN

BACKGROUND: Methanol is the second most abundant volatile organic compound in the atmosphere, with the majority produced as a metabolic by-product during plant growth. There is a large disparity between the estimated amount of methanol produced by plants and the amount which escapes to the atmosphere. This may be due to utilisation of methanol by plant-associated methanol-consuming bacteria (methylotrophs). The use of molecular probes has previously been effective in characterising the diversity of methylotrophs within the environment. Here, we developed and applied molecular probes in combination with stable isotope probing to identify the diversity, abundance and activity of methylotrophs in bulk and in plant-associated soils. RESULTS: Application of probes for methanol dehydrogenase genes (mxaF, xoxF, mdh2) in bulk and plant-associated soils revealed high levels of diversity of methylotrophic bacteria within the bulk soil, including Hyphomicrobium, Methylobacterium and members of the Comamonadaceae. The community of methylotrophic bacteria captured by this sequencing approach changed following plant growth. This shift in methylotrophic diversity was corroborated by identification of the active methylotrophs present in the soils by DNA stable isotope probing using 13C-labelled methanol. Sequencing of the 16S rRNA genes and construction of metagenomes from the 13C-labelled DNA revealed members of the Methylophilaceae as highly abundant and active in all soils examined. There was greater diversity of active members of the Methylophilaceae and Comamonadaceae and of the genus Methylobacterium in plant-associated soils compared to the bulk soil. Incubating growing pea plants in a 13CO2 atmosphere revealed that several genera of methylotrophs, as well as heterotrophic genera within the Actinomycetales, assimilated plant exudates in the pea rhizosphere. CONCLUSION: In this study, we show that plant growth has a major impact on both the diversity and the activity of methanol-utilising methylotrophs in the soil environment, and thus, the study contributes significantly to efforts to balance the terrestrial methanol and carbon cycle. Video abstract.


Asunto(s)
Bacterias/clasificación , Variación Genética , Metanol/metabolismo , Fenómenos Fisiológicos de las Plantas , Microbiología del Suelo , Oxidorreductasas de Alcohol/genética , Bacterias/metabolismo , ADN Bacteriano/genética , Metagenoma , Methylobacterium/clasificación , Methylobacterium/metabolismo , Filogenia , Plantas/metabolismo , ARN Ribosómico 16S/metabolismo , Rizosfera
16.
Appl Environ Microbiol ; 75(3): 802-10, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19074610

RESUMEN

Denitrification is an alternative type of anaerobic respiration in which nitrate is reduced to gaseous products via nitrite. The key step in this process is the reduction of nitrite to nitric oxide, which is catalyzed by two structurally different but functionally equivalent forms of nitrite reductase encoded by the nirK and nirS genes. Cultivation-independent studies based on these functional marker genes showed that in the environment there was a dominance of organisms with nirK and nirS genes presumably derived from organisms that have not been cultured yet. However, the phylogenetic affiliation of these organisms has not been resolved since the ability to denitrify is widespread in phylogenetically unrelated organisms. To unravel the phylogeny of the organisms from which the nitrite reductase (nirK) genes originated, one option is to use a special variant of whole-cell hybridization termed recognition of individual genes-fluorescence in situ hybridization (RING-FISH). In RING-FISH a multiply labeled transcript polynucleotide probe is used to detect a single gene on the bacterial chromosome during FISH. Here, RING-FISH was used with laboratory cultures and environmental samples, such as activated sludge. Furthermore, probe-based cell sorting using magnetic beads could also be carried out with mixtures of pure cultures, which led to effective depletion of the nirK-negative organism but capture of the nirK-positive organism, which was demonstrated by terminal restriction fragment length polymorphism analysis based on 16S rRNA genes. The results indicate that RING-FISH coupled with probe-based cell sorting could be used with environmental samples, which could provide a means for phylogenetic classification of nirK-type denitrifiers. Thus, the results of RING-FISH could increase our understanding of the phylogeny and function of denitrifying microorganisms in the environment.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , ADN Bacteriano/genética , Microbiología Ambiental , Hibridación Fluorescente in Situ/métodos , Nitrito Reductasas/genética , Bacterias/genética , Dermatoglifia del ADN , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S/genética
17.
Waste Manag ; 95: 365-369, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31351622

RESUMEN

Green waste composting materials and finished composts were collected from different commercial ex situ composting sites all treating source segregated green waste feedstocks. Stability of each material was determined using the standard ORG0020 dynamic respiration test. To assess whether stability could be used as an indicator for the potential suitability of green waste composting materials and finished composts as amendments for soil bioremediation, comparison was made with alkane and aromatic hydrocarbon degrader abundance determined using a quantitative PCR (qPCR) approach. Specifically, primers targeting alkB and, polyaromatic hydrocarbon ring-hydroxylating dioxygenases genes (PAH-RHD) of Gram positive (GP) and Gram negative (GN) populations were used for qPCR analysis. The results showed no direct correction between compost stability and gene abundance. Further, increase in alkB gene abundance was not linked to PAH-RHD gene abundance. The results support the use of qPCR as a tool for screening organic amendments on a site by site basis for soil bioremediation treatment.


Asunto(s)
Compostaje , Hidrocarburos Aromáticos , Alcanos , Biodegradación Ambiental , Suelo
18.
Front Microbiol ; 10: 1040, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31134039

RESUMEN

Methanethiol (MeSH) and dimethylsulfide (DMS) are volatile organic sulfur compounds (VOSCs) with important roles in sulfur cycling, signaling and atmospheric chemistry. DMS can be produced from MeSH through a reaction mediated by the methyltransferase MddA. The mddA gene is present in terrestrial and marine metagenomes, being most abundant in soil environments. The substrate for MddA, MeSH, can also be oxidized by bacteria with the MeSH oxidase (MTO) enzyme, encoded by the mtoX gene, found in marine, freshwater and soil metagenomes. Methanethiol-dependent DMS production (Mdd) pathways have been shown to function in soil and marine sediments, but have not been characterized in detail in the latter environments. In addition, few molecular studies have been conducted on MeSH consumption in the environment. Here, we performed process measurements to confirm that Mdd-dependent and Mdd-independent MeSH consumption pathways are active in tested surface saltmarsh sediment when MeSH is available. We noted that appreciable natural Mdd-independent MeSH and DMS consumption processes masked Mdd activity. 16S rRNA gene amplicon sequencing and metagenomics data showed that Methylophaga, a bacterial genus known to catabolise DMS and MeSH, was enriched by the presence of MeSH. Moreover, some MeSH and/or DMS-degrading bacteria isolated from this marine environment lacked known DMS and/or MeSH cycling genes and can be used as model organisms to potentially identify novel genes in these pathways. Thus, we are likely vastly underestimating the abundance of MeSH and DMS degraders in these marine sediment environments. The future discovery and characterization of novel enzymes involved in MeSH and/or DMS cycling is essential to better assess the role and contribution of microbes to global organosulfur cycling.

19.
Front Microbiol ; 10: 2700, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31866954

RESUMEN

Isoprene is a climate-active gas and one of the most abundant biogenic volatile organic compounds (BVOC) released into the atmosphere. In the terrestrial environment, plants are the primary producers of isoprene, releasing between 500 and 750 million tons per year to protect themselves from environmental stresses such as direct radiation, heat, and reactive oxygen species. While many studies have explored isoprene production, relatively little is known about consumption of isoprene by microbes and the most well-characterized isoprene degrader is a Rhodococcus strain isolated from freshwater sediment. In order to identify a wider range of bacterial isoprene-degraders in the environment, DNA stable isotope probing (DNA-SIP) with 13C-labeled isoprene was used to identify active isoprene degraders associated with soil in the vicinity of a willow tree. Retrieval by PCR of 16S rRNA genes from the 13C-labeled DNA revealed an active isoprene-degrading bacterial community dominated by Proteobacteria, together with a minor portion of Actinobacteria, mainly of the genus Rhodococcus. Metagenome sequencing of 13C-labeled DNA from SIP experiments enabled analysis of genes encoding key enzymes of isoprene metabolism from novel isoprene degraders. Informed by these DNA-SIP experiments and working with leaves and soil from the vicinity of tree species known to produce high amounts of isoprene, four novel isoprene-degrading strains of the genera Nocardioides, Ramlibacter, Variovorax and Sphingopyxis, along with strains of Rhodococcus and Gordonia, genera that are known to contain isoprene-degrading strains, were isolated. The use of lower concentrations of isoprene during enrichment experiments has revealed active Gram-negative isoprene-degrading bacteria associated with isoprene-emitting trees. Analysis of isoprene-degradation genes from these new isolates provided a more robust phylogenetic framework for analysis of isoA, encoding the α-subunit of the isoprene monooxygenase, a key molecular marker gene for cultivation-independent studies on isoprene degradation in the terrestrial environment.

20.
Nat Microbiol ; 4(11): 1815-1825, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31427729

RESUMEN

Dimethylsulfoniopropionate (DMSP) and its catabolite dimethyl sulfide (DMS) are key marine nutrients1,2 that have roles in global sulfur cycling2, atmospheric chemistry3, signalling4,5 and, potentially, climate regulation6,7. The production of DMSP was previously thought to be an oxic and photic process that is mainly confined to the surface oceans. However, here we show that DMSP concentrations and/or rates of DMSP and DMS synthesis are higher in surface sediment from, for example, saltmarsh ponds, estuaries and the deep ocean than in the overlying seawater. A quarter of bacterial strains isolated from saltmarsh sediment produced DMSP (up to 73 mM), and we identified several previously unknown producers of DMSP. Most DMSP-producing isolates contained dsyB8, but some alphaproteobacteria, gammaproteobacteria and actinobacteria used a methionine methylation pathway independent of DsyB that was previously only associated with higher plants. These bacteria contained a methionine methyltransferase gene (mmtN)-a marker for bacterial synthesis of DMSP through this pathway. DMSP-producing bacteria and their dsyB and/or mmtN transcripts were present in all of the tested seawater samples and Tara Oceans bacterioplankton datasets, but were much more abundant in marine surface sediment. Approximately 1 × 108 bacteria g-1 of surface marine sediment are predicted to produce DMSP, and their contribution to this process should be included in future models of global DMSP production. We propose that coastal and marine sediments, which cover a large part of the Earth's surface, are environments with high levels of DMSP and DMS productivity, and that bacteria are important producers of DMSP and DMS within these environments.


Asunto(s)
Bacterias/clasificación , Redes Reguladoras de Genes , Sedimentos Geológicos/microbiología , Compuestos de Sulfonio/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Metionina/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Filogenia , Agua de Mar/microbiología , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA