Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(22): e2203680119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35622887

RESUMEN

Noradrenergic activation of the basolateral amygdala (BLA) by emotional arousal enhances different forms of recognition memory via functional interactions with the insular cortex (IC). Human neuroimaging studies have revealed that the anterior IC (aIC), as part of the salience network, is dynamically regulated during arousing situations. Emotional stimulation first rapidly increases aIC activity but suppresses it in a delayed fashion. Here, we investigated in male Sprague-Dawley rats whether the BLA influence on recognition memory is associated with an increase or suppression of aIC activity during the postlearning consolidation period. We first employed anterograde and retrograde viral tracing and found that the BLA sends dense monosynaptic projections to the aIC. Memory-enhancing norepinephrine administration into the BLA following an object training experience suppressed aIC activity 1 h later, as determined by a reduced expression of the phosphorylated form of the transcription factor cAMP response element-binding (pCREB) protein and neuronal activity marker c-Fos. In contrast, the number of perisomatic γ-aminobutyric acid (GABA)ergic inhibitory synapses per pCREB-positive neuron was significantly increased, suggesting a dynamic up-regulation of GABAergic tone. In support of this possibility, pharmacological inhibition of aIC activity with a GABAergic agonist during consolidation enhanced object recognition memory. Norepinephrine administration into the BLA did not affect neuronal activity within the posterior IC, which receives sparse innervation from the BLA. The evidence that noradrenergic activation of the BLA enhances the consolidation of object recognition memory via a mechanism involving a suppression of aIC activity provides insight into the broader brain network dynamics underlying emotional regulation of memory.


Asunto(s)
Complejo Nuclear Basolateral , Emociones , Corteza Insular , Inhibición Neural , Reconocimiento en Psicología , Percepción Visual , Animales , Nivel de Alerta , Complejo Nuclear Basolateral/efectos de los fármacos , Complejo Nuclear Basolateral/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Emociones/efectos de los fármacos , Emociones/fisiología , Agonistas del GABA/farmacología , Corteza Insular/efectos de los fármacos , Corteza Insular/fisiología , Masculino , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Norepinefrina/administración & dosificación , Norepinefrina/farmacología , Ratas , Ratas Sprague-Dawley , Reconocimiento en Psicología/efectos de los fármacos , Reconocimiento en Psicología/fisiología , Percepción Visual/fisiología
2.
Am J Physiol Endocrinol Metab ; 322(6): E494-E507, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35403437

RESUMEN

Binge-eating disorder is the most prevalent eating disorder diagnosed, affecting three times more women than men. Ghrelin stimulates appetite and reward signaling, and loss of its receptor reduces binge-eating behavior in male mice. Here, we examined the influence of ghrelin itself on binge-eating behavior in both male and female mice. Five-wk-old wild-type (WT) and ghrelin-deficient (Ghrl-/-) mice were housed individually in indirect calorimetry cages for 9 wks. Binge-like eating was induced by giving mice ad libitum chow, but time-restricted access to a Western-style diet (WD; 2 h access, 3 days/wk) in the light phase (BE); control groups received ad libitum chow (CO), or ad libitum access to both diets (CW). All groups of BE mice showed binge-eating behavior, eating up to 60% of their 24-h intake during the WD access period. Subsequent dark phase chow intake was decreased in Ghrl-/- mice and remained decreased in Ghrl-/- females on nonbinge days. Also, nonbinge day locomotor activity was lower in Ghrl-/- than in WT BE females. Upon euthanasia, Ghrl-/- BE mice weighed less and had a lower lean body mass percentage than WT BE mice. In BE and CW groups, ghrelin and sex altered the expression of genes involved in lipid processing, thermogenesis, and aging in white adipose tissue and livers. We conclude that, although ghrelin deficiency does not hamper the development of binge-like eating, it sex-dependently alters food intake timing, locomotor activity, and metabolism. These results add to the growing body of evidence that ghrelin signaling is sexually dimorphic.NEW & NOTEWORTHY Ghrelin, a peptide hormone secreted from the gut, is involved in hunger and reward signaling, which are altered in binge-eating disorder. Although sex differences have been described in both binge-eating and ghrelin signaling, this interaction has not been fully elucidated. Here, we show that ghrelin deficiency affects the behavior and metabolism of mice in a binge-like eating paradigm, and that the sex of the mice impacts the magnitude and direction of these effects.


Asunto(s)
Trastorno por Atracón , Bulimia , Animales , Bulimia/genética , Bulimia/metabolismo , Modelos Animales de Enfermedad , Ingestión de Alimentos/genética , Conducta Alimentaria , Femenino , Expresión Génica , Ghrelina/metabolismo , Hígado/metabolismo , Locomoción , Masculino , Ratones
3.
J Mol Endocrinol ; 66(2): 83-96, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33263557

RESUMEN

Acylated ghrelin (AG) is a gut-derived peptide with growth hormone secretagogue (GHS), orexigenic and other physiological activities mediated by GHS receptor-1a (GHSR). Ghrelin occurs in unacylated form (UAG) with activities opposing AG, although its mechanism of action is unknown. UAG does not antagonize AG at GHSR, and has biological effects on cells that lack this receptor. Because UAG binds to cells, it has been hypothesized that UAG acts via a cell-surface receptor, although this has not been confirmed. This study aimed to identify cell surface proteins to which UAG binds that could modulate or mediate its biological effects. The MCF7 cell-line was used as a model because UAG induces ERK signaling in these cells in the absence of GHSR. Using ligand-receptor capture and LC-MS/MS we identified specific heparan-sulfate proteoglycans (HSPGs) to which UAG interacts on cell surfaces. In line with this, UAG, as well as AG, bind with high affinity to heparin, and heparin and heparinase treatment suppress, whereas HSPG overexpression increases, UAG binding to MCF7 cell surfaces. Moreover, heparin suppresses the ERK response to UAG. However, conversion of the lysines in UAG to alanine, which prevents its binding to heparin and cell surface HSPGs, does not prevent its activation of ERK. Our data show that the interaction of UAG with HSPGs modulates its biological activity in cells. More broadly, the interaction of UAG and AG with HSPGs could be important for the specificity and potency of their biological action in vivo.


Asunto(s)
Ghrelina/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Acilación , Membrana Celular/metabolismo , Regulación de la Expresión Génica , Heparina/metabolismo , Humanos , Ligandos , Sistema de Señalización de MAP Quinasas , Células MCF-7 , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Ghrelina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA