Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 609(7925): 174-182, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36002574

RESUMEN

The efficacy of adoptive T cell therapies for cancer treatment can be limited by suppressive signals from both extrinsic factors and intrinsic inhibitory checkpoints1,2. Targeted gene editing has the potential to overcome these limitations and enhance T cell therapeutic function3-10. Here we performed multiple genome-wide CRISPR knock-out screens under different immunosuppressive conditions to identify genes that can be targeted to prevent T cell dysfunction. These screens converged on RASA2, a RAS GTPase-activating protein (RasGAP) that we identify as a signalling checkpoint in human T cells, which is downregulated upon acute T cell receptor stimulation and can increase gradually with chronic antigen exposure. RASA2 ablation enhanced MAPK signalling and chimeric antigen receptor (CAR) T cell cytolytic activity in response to target antigen. Repeated tumour antigen stimulations in vitro revealed that RASA2-deficient T cells show increased activation, cytokine production and metabolic activity compared with control cells, and show a marked advantage in persistent cancer cell killing. RASA2-knockout CAR T cells had a competitive fitness advantage over control cells in the bone marrow in a mouse model of leukaemia. Ablation of RASA2 in multiple preclinical models of T cell receptor and CAR T cell therapies prolonged survival in mice xenografted with either liquid or solid tumours. Together, our findings highlight RASA2 as a promising target to enhance both persistence and effector function in T cell therapies for cancer treatment.


Asunto(s)
Antígenos de Neoplasias , Neoplasias , Linfocitos T , Proteínas Activadoras de ras GTPasa , Animales , Antígenos de Neoplasias/inmunología , Médula Ósea , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Humanos , Inmunoterapia Adoptiva , Leucemia/inmunología , Leucemia/patología , Leucemia/terapia , Ratones , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/inmunología , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Factores de Tiempo , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Activadoras de ras GTPasa/deficiencia , Proteínas Activadoras de ras GTPasa/genética
2.
Cancer Res ; 83(24): 4047-4062, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38098451

RESUMEN

Identifying novel cell surface receptors that regulate leukemia cell differentiation and can be targeted to inhibit cellular proliferation is crucial to improve current treatment modalities in acute myeloid leukemia (AML), especially for relapsed or chemotherapy-refractory leukemia. Leukocyte immunoglobulin-like receptor type B (LILRB) is an immunomodulatory receptor originally found to be expressed in myeloid cells. In this study, we found that LILRB receptors can be induced under inflammatory stimuli and chemotherapy treatment conditions. Blockade of LILRB3 inhibited leukemia cell proliferation and leukemia progression. In addition, treatment with LILRB3 blocking antibodies upregulated myeloid lineage differentiation transcription factors, including PU.1, C/EBP family, and IRF, whereas phosphorylation of proliferation regulators, for example, AKT, cyclin D1, and retinoblastoma protein, was decreased. Conversely, transcriptomic analysis showed LILRB3 activation by agonist antibodies may enhance leukemia survival through upregulation of cholesterol metabolism, which has been shown to promote leukemia cell survival. Moreover, LILRB3-targeted CAR T cells exhibited potent antitumor effects both in vitro and in vivo. Taken together, our results suggest that LILRB3 is a potentially potent target for multiple treatment modalities in AML. SIGNIFICANCE: LILRB3 regulates differentiation and proliferation in acute myeloid leukemia and can be targeted with monoclonal antibodies and CAR T cells to suppress leukemia growth.


Asunto(s)
Inmunoterapia Adoptiva , Leucemia Mieloide Aguda , Humanos , Inmunoterapia Adoptiva/métodos , Linfocitos T , Leucemia Mieloide Aguda/patología , Receptores de Superficie Celular/metabolismo , Células Mieloides/metabolismo , Receptores Inmunológicos/metabolismo , Antígenos CD/metabolismo
3.
Cell Rep Med ; 2(4): 100244, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33948575

RESUMEN

On-target/off-tumor toxicity is one of the major concerns regarding CAR T-cell therapy. Kosti et al.1 demonstrate that this form of toxicity can be prevented by designing a CAR whose expression is controlled by oxygen levels in the tumor environment.


Asunto(s)
Hipoxia , Inmunoterapia Adoptiva , Línea Celular Tumoral , Humanos
4.
Sci Transl Med ; 13(620): eabh0272, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34788079

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy is revolutionizing cancer immunotherapy for patients with B cell malignancies and is now being developed for solid tumors and chronic viral infections. Although clinical trials have demonstrated the curative potential of CAR T cell therapy, a substantial and well-established limitation is the heightened contraction and transient persistence of CAR T cells during prolonged antigen exposure. The underlying mechanism(s) for this dysfunctional state, often termed CAR T cell exhaustion, remains poorly defined. Here, we report that exhaustion of human CAR T cells occurs through an epigenetic repression of the T cell's multipotent developmental potential. Deletion of the de novo DNA methyltransferase 3 alpha (DNMT3A) in T cells expressing first- or second-generation CARs universally preserved the cells' ability to proliferate and mount an antitumor response during prolonged tumor exposure. The increased functionality of the exhaustion-resistant DNMT3A knockout CAR T cells was coupled to an up-regulation of interleukin-10, and genome-wide DNA methylation profiling defined an atlas of genes targeted for epigenetic silencing. This atlas provides a molecular definition of CAR T cell exhaustion, which includes many transcriptional regulators that limit the "stemness" of immune cells, including CD28, CCR7, TCF7, and LEF1. Last, we demonstrate that this epigenetically regulated multipotency program is firmly coupled to the clinical outcome of prior CAR T cell therapies. These data document the critical role epigenetic mechanisms play in limiting the fate potential of human T cells and provide a road map for leveraging this information for improving CAR T cell efficacy.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Antígenos CD28 , Epigénesis Genética , Humanos , Neoplasias/terapia , Linfocitos T , Ensayos Antitumor por Modelo de Xenoinjerto
5.
JCI Insight ; 5(21)2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33148882

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy for solid tumors has shown limited efficacy in early-phase clinical studies. The majority of CARs encode CD28 and/or 41BB costimulatory endodomains, and we explored whether MyD88 and CD40 (MC) costimulatory endodomains in CARs could improve their antitumor activity. We generated CD28-, 41BB-, and MC-CAR T cells and demonstrated that MC-CAR T cells have greater proliferative capacity and antitumor activity in repeat stimulation assays and in tumor models in vivo. Transcriptomic analysis revealed that MC-CAR T cells expressed higher levels of MYB and FOXM1, key cell cycle regulators, and were activated at baseline. After stimulation, MC-CAR T cells remained in a less differentiated state than CD28- and 41BB-CAR T cells as judged by low levels of transcription factor TBET and B lymphocyte induced maturation protein 1 expression and lower cytolytic activity in comparison with CD28- and 41BB-CAR T cells. Thus, including MyD88 and CD40 signaling domains in CARs may improve current CAR T cell therapy approaches for solid tumors.


Asunto(s)
Antígenos CD40/metabolismo , Diferenciación Celular , Glioma/terapia , Inmunoterapia Adoptiva/métodos , Activación de Linfocitos/inmunología , Factor 88 de Diferenciación Mieloide/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Animales , Apoptosis , Proliferación Celular , Femenino , Glioma/inmunología , Glioma/metabolismo , Glioma/patología , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Expert Rev Anticancer Ther ; 18(5): 451-461, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29533108

RESUMEN

INTRODUCTION: The outcome for patients with glioblastoma (GBM) remains poor, and there is an urgent need to develop novel therapeutic approaches. T cells genetically modified with chimeric antigen receptors (CARs) hold the promise to improve outcomes since they recognize and kill cells through different mechanisms than conventional therapeutics. Areas covered: This article reviews CAR design, tumor associated antigens expressed by GBMs that can be targeted with CAR T cells, preclinical and clinical studies conducted with CAR T cells, and genetic approaches to enhance their effector function. Expert commentary: While preclinical studies have highlighted the potent anti-GBM activity of CAR T cells, the initial foray of CAR T-cell therapies into the clinic resulted only in limited benefits for GBM patients. Additional genetic modification of CAR T cells has resulted in a significant increase in their anti-GBM activity in preclinical models. We are optimistic that clinical testing of these enhanced CAR T cells will be safe and result in improved anti-glioma activity in GBM patients.


Asunto(s)
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Inmunoterapia Adoptiva/métodos , Animales , Antígenos de Neoplasias/inmunología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Glioblastoma/genética , Glioblastoma/inmunología , Humanos , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología
7.
Mol Ther Methods Clin Dev ; 9: 70-80, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29552579

RESUMEN

Glioblastoma is the most aggressive primary brain tumor in humans and is virtually incurable with conventional therapies. Chimeric antigen receptor (CAR) T cell therapy targeting the glioblastoma antigen EphA2 is an attractive approach to improve outcomes because EphA2 is expressed highly in glioblastoma but only at low levels in normal brain tissue. Building upon our previous findings in this area, we generated and evaluated a panel of EphA2-specific CARs. We demonstrate here that T cells expressing CD28.ζ and 41BB.ζ CARs with short spacers had similar effector function, resulting in potent antitumor activity. In addition, incorporating the 41BB signaling domain into CD28.ζ CARs did not improve CAR T cell function. While we could not determine functional differences between CD28.ζ, 41BB.ζ, and CD28.41BB.ζ CAR T cells, we selected CD28.ζ CAR T cells for further clinical development based on safety consideration.

8.
Cancer Immunol Res ; 5(7): 571-581, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28550091

RESUMEN

Glioblastoma (GBM) is the most aggressive primary brain tumor in adults and is virtually incurable with conventional therapies. Immunotherapy with T cells expressing GBM-specific chimeric antigen receptors (CAR) is an attractive approach to improve outcomes. Although CAR T cells targeting GBM antigens, such as IL13 receptor subunit α2 (IL13Rα2), HER2, and EGFR variant III (EGFRvIII), have had antitumor activity in preclinical models, early-phase clinical testing has demonstrated limited antiglioma activity. Transgenic expression of IL15 is an appealing strategy to enhance CAR T-cell effector function. We tested this approach in our IL13Rα2-positive glioma model in which limited IL13Rα2-CAR T-cell persistence results in recurrence of antigen-positive gliomas. T cells were genetically modified with retroviral vectors encoding IL13Rα2-CARs or IL15 (IL13Rα2-CAR.IL15 T cells). IL13Rα2-CAR.IL15 T cells recognized glioma cells in an antigen-dependent fashion, had greater proliferative capacity, and produced more cytokines after repeated stimulations in comparison with IL13Rα2-CAR T cells. No autonomous IL13Rα2-CAR.IL15 T-cell proliferation was observed; however, IL15 expression increased IL13Rα2-CAR T-cell viability in the absence of exogenous cytokines or antigen. In vivo, IL13Rα2-CAR.IL15 T cells persisted longer and had greater antiglioma activity than IL13Rα2-CAR T cells, resulting in a survival advantage. Gliomas recurring after 40 days after T-cell injection had downregulated IL13Rα2 expression, indicating that antigen loss variants occur in the setting of improved T-cell persistence. Thus, CAR T cells for GBM should not only be genetically modified to improve their proliferation and persistence, but also to target multiple antigens.Summary: Glioblastoma responds imperfectly to immunotherapy. Transgenic expression of IL15 in T cells expressing CARs improved their proliferative capacity, persistence, and cytokine production. The emergence of antigen loss variants highlights the need to target multiple tumor antigens. Cancer Immunol Res; 5(7); 571-81. ©2017 AACR.


Asunto(s)
Glioblastoma/inmunología , Inmunoterapia Adoptiva , Subunidad alfa2 del Receptor de Interleucina-13/inmunología , Interleucina-15/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Animales , Antígenos de Neoplasias/inmunología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Subunidad alfa2 del Receptor de Interleucina-13/genética , Subunidad alfa2 del Receptor de Interleucina-13/uso terapéutico , Interleucina-15/genética , Interleucina-15/uso terapéutico , Activación de Linfocitos/inmunología , Ratones , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA