Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Glob Chang Biol ; 29(18): 5334-5351, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37409557

RESUMEN

The expansive plains of West Siberia contain globally significant carbon stocks, with Earth's most extensive peatland complex overlying the world's largest-known hydrocarbon basin. Numerous terrestrial methane seeps have recently been discovered on this landscape, located along the floodplains of the Ob and Irtysh Rivers in hotspots covering more than 2500 km2 . We articulated three hypotheses to explain the origin and migration pathways of methane within these seeps: (H1) uplift of Cretaceous-aged methane from deep petroleum reservoirs along faults and fractures, (H2) release of Oligocene-aged methane capped or trapped by degrading permafrost, and (H3) horizontal migration of Holocene-aged methane from surrounding peatlands. We tested these hypotheses using a range of geochemical tools on gas and water samples extracted from seeps, peatlands, and aquifers across the 120,000 km2 study area. Seep-gas composition, radiocarbon age, and stable isotope fingerprints favor the peatland hypothesis of seep-methane origin (H3). Organic matter in raised bogs is the primary source of seep methane, but observed variability in stable isotope composition and concentration suggest production in two divergent biogeochemical settings that support distinct metabolic pathways of methanogenesis. Comparison of these parameters in raised bogs and seeps indicates that the first is bogs, via CO2 reduction methanogenesis. The second setting is likely groundwater, where dissolved organic carbon from bogs is degraded via chemolithotrophic acetogenesis followed by acetate fermentation methanogenesis. Our findings highlight the importance of methane lateral migration in West Siberia's bog-dominated landscapes via intimate groundwater connections. The same phenomenon could occur in similar landscapes across the boreal-taiga biome, thereby making groundwater-fed rivers and springs potent methane sources.


Asunto(s)
Hidrocarburos , Metano , Metano/metabolismo , Siberia , Redes y Vías Metabólicas , Isótopos
2.
Ecol Lett ; 23(12): 1827-1837, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32975023

RESUMEN

Although the effect of pollution on forest health and decline received much attention in the 1980s, it has not been considered to explain the 'Divergence Problem' in dendroclimatology; a decoupling of tree growth from rising air temperatures since the 1970s. Here we use physical and biogeochemical measurements of hundreds of living and dead conifers to reconstruct the impact of heavy industrialisation around Norilsk in northern Siberia. Moreover, we develop a forward model with surface irradiance forcing to quantify long-distance effects of anthropogenic emissions on the functioning and productivity of Siberia's taiga. Downwind from the world's most polluted Arctic region, tree mortality rates of up to 100% have destroyed 24,000 km2 boreal forest since the 1960s, coincident with dramatic increases in atmospheric sulphur, copper, and nickel concentrations. In addition to regional ecosystem devastation, we demonstrate how 'Arctic Dimming' can explain the circumpolar 'Divergence Problem', and discuss implications on the terrestrial carbon cycle.


Asunto(s)
Ecosistema , Taiga , Regiones Árticas , Bosques , Árboles
3.
J Environ Manage ; 228: 405-415, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30243076

RESUMEN

Rising air temperatures and changes in precipitation patterns in boreal ecosystems are changing the fire occurrence regimes (intervals, severity, intensity, etc.). The main impacts of fires are reported to be changes in soil physical and chemical characteristics, vegetation stress, degradation of permafrost, and increased depth of the active layer. Changes in these characteristics influence the dynamics of carbon dioxide (CO2) and methane (CH4) fluxes. We have studied the changes in CO2 and CH4 fluxes from the soil in boreal forest areas in central Siberia underlain by continuous permafrost and the possible impacts of the aforementioned environmental factors on the emissions of these greenhouse gases. We have used a fire chronosequence of areas, with the last fire occurring 1, 23, 56, and more than 100 years ago. The soils in our study acted as a source of CO2. Emissions of CO2 were lowest at the most recently burned area and increased with forest age throughout the fire chronosequence. The CO2 flux was influenced by the pH of the top 5 cm of the soil, the biomass of the birch (Betula) and alder (Duschekia) trees, and by the biomass of vascular plants in the ground vegetation. Soils were found to be a CH4 sink in all our study areas. The uptake of CH4 was highest in the most recently burned area (forest fire one year ago) and the lowest in the area burned 56 years ago, but the difference between fire chronosequence areas was not significant. According to the linear mixed effect model, none of the tested factors explained the CH4 flux. The results confirm that the impact of a forest fire on CO2 flux is long-lasting in Siberian boreal forests, continuing for more than 50 years, but the impact of forest fire on CH4 flux is minimal.


Asunto(s)
Dióxido de Carbono/análisis , Metano/análisis , Betula , Ecosistema , Incendios , Hielos Perennes , Suelo , Taiga , Árboles
4.
New Phytol ; 209(3): 955-64, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26610186

RESUMEN

Stable oxygen isotope ratios (δ(18) O) in trees from high latitude ecosystems are valuable sources of information for recent and past environmental changes, but the interpretation is hampered by the complex hydrology of forests growing under permafrost conditions, where only a shallow layer of soil thaws in summer. We investigated larch trees (Larix gmelinii) at two sites with contrasting soil conditions in Siberia and determined δ(18) O of water from different soil depths, roots, twigs, and needles as well as δ(18) O of soluble carbohydrates regularly over two growing seasons. A comparison of results from the 2 yrs revealed an unexpected 'inverse' climate-isotope relationship, as dry and warm summer conditions resulted in lower soil and root δ(18) O values. This was due to a stronger uptake of isotopically depleted water pools originating from melted permafrost or previous winter snow. We developed a conceptual framework that considers the dependence of soil water profiles on climatic conditions for explaining δ(18) O in needle water, needle soluble carbohydrates and stem cellulose. The negative feedback of drought conditions on the source isotope value could explain decreasing tree-ring δ(18) O trends in a warming climate and is likely relevant in many ecosystems, where a soil isotope gradient with depth is observed.


Asunto(s)
Clima , Larix/metabolismo , Suelo/química , Agua/química , Carbohidratos/análisis , Sequías , Ecosistema , Humedad , Microclima , Isótopos de Oxígeno , Hojas de la Planta/química , Raíces de Plantas/química , Probabilidad , Siberia , Solubilidad
5.
Photosynth Res ; 130(1-3): 267-274, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27016083

RESUMEN

This research is an attempt to study seasonal translocation patterns of photoassimilated carbon within trees of one of the high latitudes widespread deciduous conifer species Larix gmelinii (Rupr. Rupr). For this purpose, we applied whole-tree labeling by 13CO2, which is a powerful and effective tool for tracing newly developed assimilates translocation to tissues and organs of a tree. Experimental plot has been established in a mature 105-year-old larch stand located within the continuous permafrost area near Tura settlement (Central Siberia, 64°17'13″N, 100°11'55″E, 148 m a.s.l.). Measurements of seasonal photosynthetic activity and foliage parameters (i.e., leaf length, area, biomass, etc.), and sampling were arranged from early growing season (June 8, 2013; May 14, 2014) until yellowing and senescence of needles (September 17, 2013; September 14, 2014). Labeling by 13C of the tree branch (June 2013, for 3 branch replicates in 3 different trees) and the whole tree was conducted at early (June 2014), middle (July 2014), and late (August 2013) phase of growing season (for different trees in 3 replicates each time) by three pulses [(CO2)max = 3000-4000 ppmv, 13CO2 (30 % v/v)]. We found at least two different patterns of carbon translocation associated with larch CO2 assimilation depending on needle phenology. In early period of growing season (June), 13C appearing in newly developed needles is a result of remobilized storage material use for growth purposes. Then approximately at the end of June, growth processes is switching to storage processes lasting to the end of growing season.


Asunto(s)
Secuestro de Carbono , Larix/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Larix/crecimiento & desarrollo , Hielos Perennes , Fotosíntesis , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Estaciones del Año , Siberia
6.
Glob Chang Biol ; 22(6): 2178-97, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26649652

RESUMEN

Fire is a primary driver of boreal forest dynamics. Intensifying fire regimes due to climate change may cause a shift in boreal forest composition toward reduced dominance of conifers and greater abundance of deciduous hardwoods, with potential biogeochemical and biophysical feedbacks to regional and global climate. This shift has already been observed in some North American boreal forests and has been attributed to changes in site conditions. However, it is unknown if the mechanisms controlling fire-induced changes in deciduous hardwood cover are similar among different boreal forests, which differ in the ecological traits of the dominant tree species. To better understand the consequences of intensifying fire regimes in boreal forests, we studied postfire regeneration in five burns in the Central Siberian dark taiga, a vast but poorly studied boreal region. We combined field measurements, dendrochronological analysis, and seed-source maps derived from high-resolution satellite images to quantify the importance of site conditions (e.g., organic layer depth) vs. seed availability in shaping postfire regeneration. We show that dispersal limitation of evergreen conifers was the main factor determining postfire regeneration composition and density. Site conditions had significant but weaker effects. We used information on postfire regeneration to develop a classification scheme for successional pathways, representing the dominance of deciduous hardwoods vs. evergreen conifers at different successional stages. We estimated the spatial distribution of different successional pathways under alternative fire regime scenarios. Under intensified fire regimes, dispersal limitation of evergreen conifers is predicted to become more severe, primarily due to reduced abundance of surviving seed sources within burned areas. Increased dispersal limitation of evergreen conifers, in turn, is predicted to increase the prevalence of successional pathways dominated by deciduous hardwoods. The likely fire-induced shift toward greater deciduous hardwood cover may affect climate-vegetation feedbacks via surface albedo, Bowen ratio, and carbon cycling.


Asunto(s)
Incendios , Dispersión de las Plantas , Taiga , Tracheophyta/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Clima , Monitoreo del Ambiente , Siberia
7.
Geochem Trans ; 16: 3, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25931985

RESUMEN

Stable Zn isotopes fractionation was studied in main biogeochemical compartments of a pristine larch forest of Central Siberia developed over continuous permafrost basalt rocks. Two north- and south-oriented watershed slopes having distinctly different vegetation biomass and active layer depth were used as natural proxy for predicting possible future climate changes occurring in this region. In addition, peat bog zone exhibiting totally different vegetation, hydrology and soil temperature regime has been studied. The isotopic composition of soil profile from Central Siberia is rather constant with a δ(66)Zn value around 0.2‰ close to the value of various basalts. Zn isotopic composition in mosses (Sphagnum fuscum and Pleurozium schreberi) exhibits differences between surface layers presenting values from 0.14 to 0.2‰ and bottom layers presenting significantly higher values (0.5 - 0.7‰) than the underlain mineral surface. The humification of both dead moss and larch needles leads to retain the fraction where Zn bound most strongly thus releasing the lighter isotopes in solution and preserving the heavy isotopes in the humification products, in general accord with previous experimental and modeling works [GCA 75:7632-7643, 2011]. The larch (Larix gmelinii) from North and South-facing slopes is enriched in heavy isotopes compared to soil reservoir while larch from Sphagnum peatbog is enriched in light isotopes. This difference may result from stronger complexation of Zn by organic ligands and humification products in the peat bog compared to mineral surfaces in North- and South-facing slope. During the course of the growing period, Zn followed the behavior of macronutrients with a decrease of concentration from June to September. During this period, an enrichment of larch needles by heavier Zn isotopes is observed in the various habitats. We suggest that the increase of the depth of rooting zone, and the decrease of DOC and Zn concentration in soil solution from the root uptake zone with progressively thawing soil could provoke heavy isotopes to become more available for the larch roots at the end of the vegetative season compared to the beginning of the season, because the decrease of DOC will facilitate the uptake of heavy isotope as it will be less retained in strong organic complexes.

8.
Sci Total Environ ; 912: 168858, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38030001

RESUMEN

Perennially frozen soil, also known as permafrost, is important for the functioning and productivity of most of the boreal forest, the world's largest terrestrial biome. A better understanding of complex vegetation-permafrost interrelationships is needed to predict changes in local- to large-scale carbon, nutrient, and water cycle dynamics under future global warming. Here, we analyze tree-ring width and tree-ring stable isotope (C and O) measurements of Gmelin larch (Larix gmelinii (Rupr.) Rupr.) from six permafrost sites in the northern taiga of central Siberia. Our multi-parameter approach shows that changes in tree growth were predominantly controlled by the air and topsoil temperature and moisture content of the active soil and upper permafrost layers. The observed patterns range from strong growth limitations by early summer temperatures at higher elevations to significant growth controls by precipitation at warmer and well-drained lower-elevation sites. Enhanced radial tree growth is mainly found at sites with fast thawing upper mineral soil layers, and the comparison of tree-ring isotopes over five-year periods with different amounts of summer precipitation indicates that trees can prevent drought stress by accessing water from melted snow and seasonally frozen soil. Identifying the active soil and upper permafrost layers as central water resources for boreal tree growth during dry summers demonstrates the complexity of ecosystem responses to climatic changes.


Asunto(s)
Hielos Perennes , Taiga , Ecosistema , Sequías , Suelo , Bosques
9.
Front Plant Sci ; 13: 780153, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712567

RESUMEN

Climate change projections forecast most significant impacts on high-latitude forest ecosystems. Particularly, climate warming in boreal regions should increase fire severity and shorten its return interval. These processes can change the dynamics of boreal forests as younger stands become more dominating with a shift from gymnosperm to angiosperm. However, despite angiosperm's phenological and physiological traits have a high potential for ecophysiological and dendroclimatological studies in Siberia, they have been rarely investigated due to their short-term lifespan in comparison with gymnosperm. Modeling tree growth is a common way to understand tree growth responses to environmental changes since it allows using available experiment or field data to interpret observed climate-growth relationships based on the biological principles. In our study, we applied the process-based Vaganov-Shashkin (VS) model of tree-ring growth via a parameterization approach VS-oscilloscope for the first time to an angiosperm tree species (Betula pubescens Ehrh.) from continuous permafrost terrain to understand its tree-radial growth dynamic. The parameterization of the VS model provided highly significant positive correlations (p < 0.05) between the simulated growth curve and initial tree-ring chronologies for the period 1971-2011 and displayed the average duration of the growing season and intra-seasonal key limiting factors for xylem formation. Modeled result can be valid at the regional scale for remote birch stands, whereas, justification of the local non-climatic input data of the model provided precise site-specific tree growth dynamic and their substantiated responses to driving factors.

10.
Plants (Basel) ; 11(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36559591

RESUMEN

Fires are a naturally cyclical factor regulating ecosystems' function and forming new postfire ecosystems. Peat soils are unique archives that store information about ecological and climatic changes and the history of past fires during the Holocene. The paper presents a reconstruction of the dynamics of fires in the subzone of the middle taiga of Western Siberia in the Holocene. Data on fires were obtained based on the results of a study of the content of macroscopic coal particles and radiocarbon dating. The effect of fires on soil organic matter (SOM) was estimated using 13C NMR spectroscopy and the content of polyaromatic hydrocarbons (PAHs). It is shown that throughout the Holocene, the peatlands studied were prone to fires. The conducted analyses show that the maximum content of charcoal particles is observed in the Atlantic (~9100−5800 cal. B.P.) and Subatlantic (~3100 cal. B.P. to the present) periods. The high correlation dependence of the content of coals with the content of PAHs (r = 0.56, p < 0.05) and aromatic structures of SOM (r = 0.61, p < 0.05) in peat horizons is shown, which can characterize these parameters as a reliable marker of pyrogenesis.

11.
Sci Total Environ ; 711: 134851, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32000328

RESUMEN

One of the effects of climate change on boreal forest will be more frequent forest wildfires and permafrost thawing. These will increase the availability of soil organic matter (SOM) for microorganisms, change the ground vegetation composition and ultimately affect the emissions of biogenic volatile organic compounds (BVOCs), which impact atmospheric chemistry and climate. BVOC emissions from boreal forest floor have been little characterized in southern boreal region, and even less so in permafrost soil, which underlies most of the northern boreal region. Here, we report the long-term effects of wildfire on forest floor BVOC emission rates along a wildfire chronosequence in a Larix gmelinii forest in central Siberia. We determined forest floor BVOC emissions from forests exposed to wildfire 1, 23 and > 100 years ago. We studied how forest wildfires and the subsequent succession of ground vegetation, as well as changes in the availability of SOM along with the deepened and recovered active layer, influence BVOC emission rates. The forest floor acted as source of a large number of BVOCs in all forest age classes. Monoterpenes were the most abundant BVOC group in all age classes. The total BVOC emission rates measured from the 23- and >100-year-old areas were ca. 2.6 times higher than the emissions from the 1-year-old area. Lower emissions were related to a decrease in plant coverage and microbial decomposition of SOM after wildfire. Our results showed that forest wildfires play an important indirect role in regulating the amount and composition of BVOC emissions from post-fire originated boreal forest floor. This could have a substantial effect on BVOC emissions if the frequency of forest wildfires increases in the future as a result of climate warming.


Asunto(s)
Hielos Perennes , Incendios Forestales , Siberia , Taiga , Compuestos Orgánicos Volátiles
12.
Sci Total Environ ; 652: 314-319, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30366332

RESUMEN

Although it has been recognized that rising temperatures and shifts in the hydrological cycle affect the depth of the seasonally thawing upper permafrost stratum, it remains unclear to what extent the frequency and intensity of wildfires, and subsequent changes in vegetation cover, influence the soil active layer on different spatiotemporal scales. Here, we use ring width measurements of the subterranean stem part of 15 larch trees from a Sphagnum bog site in Central Siberia to reconstruct long-term changes in the thickness of the active layer since the last wildfire occurred in 1899. Our approach reveals a three-step feedback loop between above- and belowground ecosystem components. After all vegetation is burned, direct atmospheric heat penetration over the first ~20 years caused thawing of the upper permafrost stratum. The slow recovery of the insulating ground vegetation reverses the process and initiates a gradual decrease of the active layer thickness. Due to the continuous spreading and thickening of the peat layer during the last decades, the upper permafrost horizon has increased by 0.52 cm/year. This study demonstrates the strength of annually resolved and absolutely dated tree-ring series to reconstruct the effects of historical wildfires on the functioning and productivity of boreal forest ecosystems at multi-decadal to centennial time-scale. In so doing, we show how complex interactions of above- and belowground components translate into successive changes in the active permafrost stratum. Our results are particularly relevant for improving long-term estimates of the global carbon cycle that strongly depends on the source and sink behavior of the boreal forest zone.


Asunto(s)
Hielos Perennes , Taiga , Árboles , Incendios Forestales , Ciclo del Carbono , Ecosistema , Siberia , Suelo , Sphagnopsida , Temperatura
13.
Sci Rep ; 7(1): 12776, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28986589

RESUMEN

Improved understanding of carbon (C) accumulation after a boreal fire enables more accurate quantification of the C implications caused by potential fire regime shifts. We coupled results from a fire history study with biomass and soil sampling in a remote and little-studied region that represents a vast area of boreal taiga. We used an inventory approach based on predefined plot locations, thus avoiding problems potentially causing bias related to the standard chronosequence approach. The disadvantage of our inventory approach is that more plots are needed to expose trends. Because of this we could not expose clear trends, despite laborious sampling. We found some support for increasing C and nitrogen (N) stored in living trees and dead wood with increasing time since the previous fire or time since the previous stand-replacing fire. Surprisingly, we did not gain support for the well-established paradigm on successional patterns, beginning with angiosperms and leading, if fires are absent, to dominance of Picea. Despite the lack of clear trends in our data, we encourage fire historians and ecosystem scientists to join forces and use even larger data sets to study C accumulation since fire in the complex Eurasian boreal landscapes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA